一类广义全态爱森斯坦级数的渐近展开,拉马努詹的 $$\zeta (2k+1)$$ 公式,魏尔斯特拉斯的椭圆函数和相关函数

Masanori Katsurada, Takumi Noda
{"title":"一类广义全态爱森斯坦级数的渐近展开,拉马努詹的 $$\\zeta (2k+1)$$ 公式,魏尔斯特拉斯的椭圆函数和相关函数","authors":"Masanori Katsurada, Takumi Noda","doi":"10.1007/s11139-024-00911-9","DOIUrl":null,"url":null,"abstract":"<p>For a class of generalized holomorphic Eisenstein series, we establish complete asymptotic expansions (Theorems 1 and 2). These, together with the explicit expression of the latter remainder (Theorem 3), naturally transfer to several new variants of the celebrated formulae of Euler and of Ramanujan for specific values of the Riemann zeta-function (Theorem 4 and Corollaries 4.1–4.5), and to various modular type relations for the classical Eisenstein series of any even integer weight (Corollary 4.6) as well as for Weierstraß’ elliptic and allied functions (Corollaries 4.7–4.9). Crucial roles in the proofs are played by certain Mellin-Barnes type integrals, which are manipulated with several properties Kummer’s confluent hypergeometric functions.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic expansions for a class of generalized holomorphic Eisenstein series, Ramanujan’s formula for $$\\\\zeta (2k+1)$$ , Weierstraß’ elliptic and allied functions\",\"authors\":\"Masanori Katsurada, Takumi Noda\",\"doi\":\"10.1007/s11139-024-00911-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a class of generalized holomorphic Eisenstein series, we establish complete asymptotic expansions (Theorems 1 and 2). These, together with the explicit expression of the latter remainder (Theorem 3), naturally transfer to several new variants of the celebrated formulae of Euler and of Ramanujan for specific values of the Riemann zeta-function (Theorem 4 and Corollaries 4.1–4.5), and to various modular type relations for the classical Eisenstein series of any even integer weight (Corollary 4.6) as well as for Weierstraß’ elliptic and allied functions (Corollaries 4.7–4.9). Crucial roles in the proofs are played by certain Mellin-Barnes type integrals, which are manipulated with several properties Kummer’s confluent hypergeometric functions.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00911-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00911-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一类广义全形爱森斯坦级数,我们建立了完整的渐近展开式(定理 1 和 2)。这些定理,连同后一个余数的明确表达式(定理 3),自然而然地转换成了欧拉和拉马努扬针对黎曼zeta函数特定值的著名公式的几个新变体(定理 4 和推论 4.1-4.5),以及针对任意偶数整数权的经典爱森斯坦级数的各种模块类型关系(推论 4.6)和魏尔斯特拉斯的椭圆函数及相关函数(推论 4.7-4.9)。在证明中起关键作用的是某些梅林-巴恩斯型积分,它们与库默尔的汇合超几何函数的几个性质有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic expansions for a class of generalized holomorphic Eisenstein series, Ramanujan’s formula for $$\zeta (2k+1)$$ , Weierstraß’ elliptic and allied functions

For a class of generalized holomorphic Eisenstein series, we establish complete asymptotic expansions (Theorems 1 and 2). These, together with the explicit expression of the latter remainder (Theorem 3), naturally transfer to several new variants of the celebrated formulae of Euler and of Ramanujan for specific values of the Riemann zeta-function (Theorem 4 and Corollaries 4.1–4.5), and to various modular type relations for the classical Eisenstein series of any even integer weight (Corollary 4.6) as well as for Weierstraß’ elliptic and allied functions (Corollaries 4.7–4.9). Crucial roles in the proofs are played by certain Mellin-Barnes type integrals, which are manipulated with several properties Kummer’s confluent hypergeometric functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信