素数幂之和 II

Lawrence C. Washington
{"title":"素数幂之和 II","authors":"Lawrence C. Washington","doi":"10.1007/s11139-024-00917-3","DOIUrl":null,"url":null,"abstract":"<p>For a real number <i>k</i>, define <span>\\(\\pi _k(x) = \\sum _{p\\le x} p^k\\)</span>. When <span>\\(k&gt;0\\)</span>, we prove that </p><span>$$\\begin{aligned} \\pi _k(x) - \\pi (x^{k+1}) = \\Omega _{\\pm }\\left( \\frac{x^{\\frac{1}{2}+k}}{\\log x} \\log \\log \\log x\\right) \\end{aligned}$$</span><p>as <span>\\(x\\rightarrow \\infty \\)</span>, and we prove a similar result when <span>\\(-1&lt;k&lt;0\\)</span>. This strengthens a result in a paper by Gerard and the author and it corrects a flaw in a proof in that paper. We also quantify the observation from that paper that <span>\\(\\pi _k(x) - \\pi (x^{k+1})\\)</span> is usually negative when <span>\\(k&gt;0\\)</span> and usually positive when <span>\\(-1&lt;k&lt;0\\)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of powers of primes II\",\"authors\":\"Lawrence C. Washington\",\"doi\":\"10.1007/s11139-024-00917-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a real number <i>k</i>, define <span>\\\\(\\\\pi _k(x) = \\\\sum _{p\\\\le x} p^k\\\\)</span>. When <span>\\\\(k&gt;0\\\\)</span>, we prove that </p><span>$$\\\\begin{aligned} \\\\pi _k(x) - \\\\pi (x^{k+1}) = \\\\Omega _{\\\\pm }\\\\left( \\\\frac{x^{\\\\frac{1}{2}+k}}{\\\\log x} \\\\log \\\\log \\\\log x\\\\right) \\\\end{aligned}$$</span><p>as <span>\\\\(x\\\\rightarrow \\\\infty \\\\)</span>, and we prove a similar result when <span>\\\\(-1&lt;k&lt;0\\\\)</span>. This strengthens a result in a paper by Gerard and the author and it corrects a flaw in a proof in that paper. We also quantify the observation from that paper that <span>\\\\(\\\\pi _k(x) - \\\\pi (x^{k+1})\\\\)</span> is usually negative when <span>\\\\(k&gt;0\\\\)</span> and usually positive when <span>\\\\(-1&lt;k&lt;0\\\\)</span>.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00917-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00917-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于实数k,定义(pi _k(x) = \sum _{p\le x} p^k\)。当(k>0)时,我们证明 $$\begin{aligned}\pi _k(x) - \pi (x^{k+1}) = \Omega _{\pm }\left( \frac{x^{frac\{1}{2}+k}}{\log x} \log \log x\right) \end{aligned}$$as \(x\rightarrow \infty \),当(-1<k<0)时,我们证明了类似的结果。这加强了杰拉德和作者论文中的一个结果,并纠正了该论文证明中的一个缺陷。我们还量化了那篇论文中的观察结果,即当\(k>0\)时,\(\pi _k(x) - \pi(x^{k+1})\)通常是负值,而当\(-1<k<0\)时,通常是正值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sums of powers of primes II

For a real number k, define \(\pi _k(x) = \sum _{p\le x} p^k\). When \(k>0\), we prove that

$$\begin{aligned} \pi _k(x) - \pi (x^{k+1}) = \Omega _{\pm }\left( \frac{x^{\frac{1}{2}+k}}{\log x} \log \log \log x\right) \end{aligned}$$

as \(x\rightarrow \infty \), and we prove a similar result when \(-1<k<0\). This strengthens a result in a paper by Gerard and the author and it corrects a flaw in a proof in that paper. We also quantify the observation from that paper that \(\pi _k(x) - \pi (x^{k+1})\) is usually negative when \(k>0\) and usually positive when \(-1<k<0\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信