倒数超模分区统计的渐近性

Jeffrey C. Lagarias, Chenyang Sun
{"title":"倒数超模分区统计的渐近性","authors":"Jeffrey C. Lagarias, Chenyang Sun","doi":"10.1007/s11139-024-00893-8","DOIUrl":null,"url":null,"abstract":"<p>We consider two multiplicative statistics on the set of integer partitions: the norm of a partition, which is the product of its parts, and the supernorm of a partition, which is the product of the prime numbers <span>\\(p_i\\)</span> indexed by its parts <i>i</i>. We introduce and study new statistics that are sums of reciprocals of supernorms on three statistical ensembles of partitions, labelled by their size <span>\\(|\\lambda |=n\\)</span>, their perimeter equaling <i>n</i>, and their largest part equaling <i>n</i>. We show that the cumulative statistics of the reciprocal supernorm for each of the three ensembles are asymptotic to <span>\\(e^{\\gamma } \\log n\\)</span> as <span>\\(n \\rightarrow \\infty \\)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of reciprocal supernorm partition statistics\",\"authors\":\"Jeffrey C. Lagarias, Chenyang Sun\",\"doi\":\"10.1007/s11139-024-00893-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider two multiplicative statistics on the set of integer partitions: the norm of a partition, which is the product of its parts, and the supernorm of a partition, which is the product of the prime numbers <span>\\\\(p_i\\\\)</span> indexed by its parts <i>i</i>. We introduce and study new statistics that are sums of reciprocals of supernorms on three statistical ensembles of partitions, labelled by their size <span>\\\\(|\\\\lambda |=n\\\\)</span>, their perimeter equaling <i>n</i>, and their largest part equaling <i>n</i>. We show that the cumulative statistics of the reciprocal supernorm for each of the three ensembles are asymptotic to <span>\\\\(e^{\\\\gamma } \\\\log n\\\\)</span> as <span>\\\\(n \\\\rightarrow \\\\infty \\\\)</span>.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00893-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00893-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了整数分区集合上的两个乘法统计量:一个分区的规范,即其各部分的乘积;以及一个分区的超规范,即由其各部分 i 索引的素数 \(p_i\)的乘积。我们引入并研究了新的统计量,这些统计量是三个分区统计集合上的超矩阵的倒数之和,它们以大小 \(|\lambda|=n\)、周长等于 n 和最大部分等于 n 来标示。我们证明这三个集合的倒数超矩阵的累积统计量都渐近于 \(e^{\gamma } \log n\) as \(n \rightarrow \infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotics of reciprocal supernorm partition statistics

Asymptotics of reciprocal supernorm partition statistics

We consider two multiplicative statistics on the set of integer partitions: the norm of a partition, which is the product of its parts, and the supernorm of a partition, which is the product of the prime numbers \(p_i\) indexed by its parts i. We introduce and study new statistics that are sums of reciprocals of supernorms on three statistical ensembles of partitions, labelled by their size \(|\lambda |=n\), their perimeter equaling n, and their largest part equaling n. We show that the cumulative statistics of the reciprocal supernorm for each of the three ensembles are asymptotic to \(e^{\gamma } \log n\) as \(n \rightarrow \infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信