测试连续函数数据的协方差可分性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Holger Dette, Gauthier Dierickx, Tim Kutta
{"title":"测试连续函数数据的协方差可分性","authors":"Holger Dette, Gauthier Dierickx, Tim Kutta","doi":"10.1111/jtsa.12764","DOIUrl":null,"url":null,"abstract":"Analyzing the covariance structure of data is a fundamental task of statistics. While this task is simple for low‐dimensional observations, it becomes challenging for more intricate objects, such as multi‐variate functions. Here, the covariance can be so complex that just saving a non‐parametric estimate is impractical and structural assumptions are necessary to tame the model. One popular assumption for space‐time data is separability of the covariance into purely spatial and temporal factors. In this article, we present a new test for separability in the context of dependent functional time series. While most of the related work studies functional data in a Hilbert space of square integrable functions, we model the observations as objects in the space of continuous functions equipped with the supremum norm. We argue that this (mathematically challenging) setup enhances interpretability for users and is more in line with practical preprocessing. Our test statistic measures the maximal deviation between the estimated covariance kernel and a separable approximation. Critical values are obtained by a non‐standard multiplier bootstrap for dependent data. We prove the statistical validity of our approach and demonstrate its practicability in a simulation study and a data example.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing covariance separability for continuous functional data\",\"authors\":\"Holger Dette, Gauthier Dierickx, Tim Kutta\",\"doi\":\"10.1111/jtsa.12764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing the covariance structure of data is a fundamental task of statistics. While this task is simple for low‐dimensional observations, it becomes challenging for more intricate objects, such as multi‐variate functions. Here, the covariance can be so complex that just saving a non‐parametric estimate is impractical and structural assumptions are necessary to tame the model. One popular assumption for space‐time data is separability of the covariance into purely spatial and temporal factors. In this article, we present a new test for separability in the context of dependent functional time series. While most of the related work studies functional data in a Hilbert space of square integrable functions, we model the observations as objects in the space of continuous functions equipped with the supremum norm. We argue that this (mathematically challenging) setup enhances interpretability for users and is more in line with practical preprocessing. Our test statistic measures the maximal deviation between the estimated covariance kernel and a separable approximation. Critical values are obtained by a non‐standard multiplier bootstrap for dependent data. We prove the statistical validity of our approach and demonstrate its practicability in a simulation study and a data example.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/jtsa.12764\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分析数据的协方差结构是统计学的一项基本任务。虽然这项任务对于低维观测数据来说很简单,但对于更复杂的对象(如多变量函数)来说就变得具有挑战性。在这种情况下,协方差可能非常复杂,仅仅保存一个非参数估计是不切实际的,因此需要结构假设来驯服模型。对于时空数据,一种流行的假设是将协方差分离为纯粹的空间和时间因素。在本文中,我们提出了一种在依赖函数时间序列背景下的新的可分性检验方法。大多数相关工作都是在方形可积分函数的希尔伯特空间中研究函数数据,而我们则将观测数据建模为连续函数空间中的对象,并配备了至上规范。我们认为,这种(数学上具有挑战性的)设置增强了用户的可解释性,也更符合实际预处理的需要。我们的检验统计量测量的是估计协方差核与可分离近似值之间的最大偏差。临界值是通过对依存数据进行非标准乘法自举得到的。我们通过模拟研究和数据示例证明了我们方法的统计有效性,并展示了其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing covariance separability for continuous functional data
Analyzing the covariance structure of data is a fundamental task of statistics. While this task is simple for low‐dimensional observations, it becomes challenging for more intricate objects, such as multi‐variate functions. Here, the covariance can be so complex that just saving a non‐parametric estimate is impractical and structural assumptions are necessary to tame the model. One popular assumption for space‐time data is separability of the covariance into purely spatial and temporal factors. In this article, we present a new test for separability in the context of dependent functional time series. While most of the related work studies functional data in a Hilbert space of square integrable functions, we model the observations as objects in the space of continuous functions equipped with the supremum norm. We argue that this (mathematically challenging) setup enhances interpretability for users and is more in line with practical preprocessing. Our test statistic measures the maximal deviation between the estimated covariance kernel and a separable approximation. Critical values are obtained by a non‐standard multiplier bootstrap for dependent data. We prove the statistical validity of our approach and demonstrate its practicability in a simulation study and a data example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信