{"title":"牧场土壤碳清单的系统方法","authors":"Shawn W. Salley, Joel R. Brown","doi":"10.1071/rj24017","DOIUrl":null,"url":null,"abstract":"<p>Significant and lasting soil carbon change in rangeland ecosystems requires ecological state change. Although within-ecological state, soil carbon dynamics can occur, they are driven primarily by short-term fluctuations in weather, specifically precipitation, and are insufficient to provide reliable estimates of change to support policy and management decisions. Changes in grazing management typically do not result in ecological state change, apart from the vegetation structural change associated with long-term overgrazing. Dominant vegetation attributes such as shrub-to-grass ratios, cool season versus warm season plant production, and annual versus perennial growth habit define ecological state and are detectable accurately and cost-effectively using existing remote-sensing technology. These vegetation attributes, along with stationary soil properties, allow for mapping at scales consistent with a variety of policy and management decisions and provide a logical basis for developing a credible sampling framework for verification. Furthermore, state-transition models of ecological state dynamics are designed to provide information that can be used to support inventories and management decisions for soil carbon and other ecosystem services.</p>","PeriodicalId":20810,"journal":{"name":"Rangeland Journal","volume":"535 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic approach to soil carbon inventory on rangelands\",\"authors\":\"Shawn W. Salley, Joel R. Brown\",\"doi\":\"10.1071/rj24017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Significant and lasting soil carbon change in rangeland ecosystems requires ecological state change. Although within-ecological state, soil carbon dynamics can occur, they are driven primarily by short-term fluctuations in weather, specifically precipitation, and are insufficient to provide reliable estimates of change to support policy and management decisions. Changes in grazing management typically do not result in ecological state change, apart from the vegetation structural change associated with long-term overgrazing. Dominant vegetation attributes such as shrub-to-grass ratios, cool season versus warm season plant production, and annual versus perennial growth habit define ecological state and are detectable accurately and cost-effectively using existing remote-sensing technology. These vegetation attributes, along with stationary soil properties, allow for mapping at scales consistent with a variety of policy and management decisions and provide a logical basis for developing a credible sampling framework for verification. Furthermore, state-transition models of ecological state dynamics are designed to provide information that can be used to support inventories and management decisions for soil carbon and other ecosystem services.</p>\",\"PeriodicalId\":20810,\"journal\":{\"name\":\"Rangeland Journal\",\"volume\":\"535 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rangeland Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/rj24017\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/rj24017","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
A systematic approach to soil carbon inventory on rangelands
Significant and lasting soil carbon change in rangeland ecosystems requires ecological state change. Although within-ecological state, soil carbon dynamics can occur, they are driven primarily by short-term fluctuations in weather, specifically precipitation, and are insufficient to provide reliable estimates of change to support policy and management decisions. Changes in grazing management typically do not result in ecological state change, apart from the vegetation structural change associated with long-term overgrazing. Dominant vegetation attributes such as shrub-to-grass ratios, cool season versus warm season plant production, and annual versus perennial growth habit define ecological state and are detectable accurately and cost-effectively using existing remote-sensing technology. These vegetation attributes, along with stationary soil properties, allow for mapping at scales consistent with a variety of policy and management decisions and provide a logical basis for developing a credible sampling framework for verification. Furthermore, state-transition models of ecological state dynamics are designed to provide information that can be used to support inventories and management decisions for soil carbon and other ecosystem services.
期刊介绍:
The Rangeland Journal publishes original work that makes a significant contribution to understanding the biophysical, social, cultural, economic, and policy influences affecting rangeland use and management throughout the world. Rangelands are defined broadly and include all those environments where natural ecological processes predominate, and where values and benefits are based primarily on natural resources.
Articles may present the results of original research, contributions to theory or new conclusions reached from the review of a topic. Their structure need not conform to that of standard scientific articles but writing style must be clear and concise. All material presented must be well documented, critically analysed and objectively presented. All papers are peer-reviewed.
The Rangeland Journal is published on behalf of the Australian Rangeland Society.