基于永磁体的激光驱动质子束紧凑型传输系统的设计优化

Jared T. De ChantLawrence Berkeley National Laboratory, Berkeley, CA USA, Kei NakamuraLawrence Berkeley National Laboratory, Berkeley, CA USA, Qing JiLawrence Berkeley National Laboratory, Berkeley, CA USA, Lieselotte Obst-HueblLawrence Berkeley National Laboratory, Berkeley, CA USA, Samuel K. BarberLawrence Berkeley National Laboratory, Berkeley, CA USA, Antoine M. SnijdersLawrence Berkeley National Laboratory, Berkeley, CA USA, Thomas SchenkelLawrence Berkeley National Laboratory, Berkeley, CA USA, Jeroen van TilborgLawrence Berkeley National Laboratory, Berkeley, CA USA, Cameron G. R. GeddesLawrence Berkeley National Laboratory, Berkeley, CA USA, Carl B. SchroederLawrence Berkeley National Laboratory, Berkeley, CA USA, Eric EsareyLawrence Berkeley National Laboratory, Berkeley, CA USA
{"title":"基于永磁体的激光驱动质子束紧凑型传输系统的设计优化","authors":"Jared T. De ChantLawrence Berkeley National Laboratory, Berkeley, CA USA, Kei NakamuraLawrence Berkeley National Laboratory, Berkeley, CA USA, Qing JiLawrence Berkeley National Laboratory, Berkeley, CA USA, Lieselotte Obst-HueblLawrence Berkeley National Laboratory, Berkeley, CA USA, Samuel K. BarberLawrence Berkeley National Laboratory, Berkeley, CA USA, Antoine M. SnijdersLawrence Berkeley National Laboratory, Berkeley, CA USA, Thomas SchenkelLawrence Berkeley National Laboratory, Berkeley, CA USA, Jeroen van TilborgLawrence Berkeley National Laboratory, Berkeley, CA USA, Cameron G. R. GeddesLawrence Berkeley National Laboratory, Berkeley, CA USA, Carl B. SchroederLawrence Berkeley National Laboratory, Berkeley, CA USA, Eric EsareyLawrence Berkeley National Laboratory, Berkeley, CA USA","doi":"arxiv-2408.01502","DOIUrl":null,"url":null,"abstract":"Laser-driven (LD) ion acceleration has been explored in a newly constructed\nshort focal length beamline at the BELLA petawatt facility (interaction point\n2, iP2). For applications utilizing such LD ion beams, a beam transport system\nis required, which for reasons of compactness be ideally contained within 3 m.\nThe large divergence and energy spread of LD ion beams present a unique\nchallenge to transporting them compared to beams from conventional\naccelerators. This work gives an overview of proposed compact transport designs\nthat can satisfy different requirements depending on the application for the\niP2 proton beamline such as radiation biology, material science, and high\nenergy density science. These designs are optimized for different parameters\nsuch as energy spread and peak proton density according to an application's\nneed. The various designs consist solely of permanent magnet elements, which\ncan provide high magnetic field gradients on a small footprint. While the field\nstrengths are fixed, we have shown that the beam size and energy can be tuned\neffectively by varying the placement of the magnets. The performance of each\ndesign was evaluated based on high order particle tracking simulations of\ntypical LD proton beams. A more detailed investigation was carried out for a\ndesign to deliver 10 MeV LD accelerated ions for radiation biology\napplications. With these transport system designs, the iP2 beamline is ready to\nhouse various application experiments.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Optimization of Permanent-Magnet Based Compact Transport Systems for Laser-Driven Proton Beams\",\"authors\":\"Jared T. De ChantLawrence Berkeley National Laboratory, Berkeley, CA USA, Kei NakamuraLawrence Berkeley National Laboratory, Berkeley, CA USA, Qing JiLawrence Berkeley National Laboratory, Berkeley, CA USA, Lieselotte Obst-HueblLawrence Berkeley National Laboratory, Berkeley, CA USA, Samuel K. BarberLawrence Berkeley National Laboratory, Berkeley, CA USA, Antoine M. SnijdersLawrence Berkeley National Laboratory, Berkeley, CA USA, Thomas SchenkelLawrence Berkeley National Laboratory, Berkeley, CA USA, Jeroen van TilborgLawrence Berkeley National Laboratory, Berkeley, CA USA, Cameron G. R. GeddesLawrence Berkeley National Laboratory, Berkeley, CA USA, Carl B. SchroederLawrence Berkeley National Laboratory, Berkeley, CA USA, Eric EsareyLawrence Berkeley National Laboratory, Berkeley, CA USA\",\"doi\":\"arxiv-2408.01502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-driven (LD) ion acceleration has been explored in a newly constructed\\nshort focal length beamline at the BELLA petawatt facility (interaction point\\n2, iP2). For applications utilizing such LD ion beams, a beam transport system\\nis required, which for reasons of compactness be ideally contained within 3 m.\\nThe large divergence and energy spread of LD ion beams present a unique\\nchallenge to transporting them compared to beams from conventional\\naccelerators. This work gives an overview of proposed compact transport designs\\nthat can satisfy different requirements depending on the application for the\\niP2 proton beamline such as radiation biology, material science, and high\\nenergy density science. These designs are optimized for different parameters\\nsuch as energy spread and peak proton density according to an application's\\nneed. The various designs consist solely of permanent magnet elements, which\\ncan provide high magnetic field gradients on a small footprint. While the field\\nstrengths are fixed, we have shown that the beam size and energy can be tuned\\neffectively by varying the placement of the magnets. The performance of each\\ndesign was evaluated based on high order particle tracking simulations of\\ntypical LD proton beams. A more detailed investigation was carried out for a\\ndesign to deliver 10 MeV LD accelerated ions for radiation biology\\napplications. With these transport system designs, the iP2 beamline is ready to\\nhouse various application experiments.\",\"PeriodicalId\":501274,\"journal\":{\"name\":\"arXiv - PHYS - Plasma Physics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

激光驱动(LD)离子加速已在 BELLA 瓦特设施(交互点 2,iP2)新建的短焦距光束线中进行了探索。与来自传统加速器的离子束相比,LD 离子束的发散性和能量分布较大,这给离子束的传输带来了独特的挑战。这项工作概述了拟议的紧凑型传输设计,这些设计可以满足不同的要求,具体取决于 iP2 质子光束线的应用,如辐射生物学、材料科学和高能量密度科学。这些设计根据不同的应用需求,对能量分布和质子密度峰值等参数进行了优化。各种设计仅由永磁元件组成,可以在较小的占地面积上提供较高的磁场梯度。虽然磁场强度是固定的,但我们已经证明,通过改变磁铁的位置,可以有效地调整束流大小和能量。根据典型 LD 质子束的高阶粒子跟踪模拟,对每种设计的性能进行了评估。针对为辐射生物应用提供 10 MeV LD 加速离子的设计进行了更详细的研究。有了这些传输系统设计,iP2 光束线就可以进行各种应用实验了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Optimization of Permanent-Magnet Based Compact Transport Systems for Laser-Driven Proton Beams
Laser-driven (LD) ion acceleration has been explored in a newly constructed short focal length beamline at the BELLA petawatt facility (interaction point 2, iP2). For applications utilizing such LD ion beams, a beam transport system is required, which for reasons of compactness be ideally contained within 3 m. The large divergence and energy spread of LD ion beams present a unique challenge to transporting them compared to beams from conventional accelerators. This work gives an overview of proposed compact transport designs that can satisfy different requirements depending on the application for the iP2 proton beamline such as radiation biology, material science, and high energy density science. These designs are optimized for different parameters such as energy spread and peak proton density according to an application's need. The various designs consist solely of permanent magnet elements, which can provide high magnetic field gradients on a small footprint. While the field strengths are fixed, we have shown that the beam size and energy can be tuned effectively by varying the placement of the magnets. The performance of each design was evaluated based on high order particle tracking simulations of typical LD proton beams. A more detailed investigation was carried out for a design to deliver 10 MeV LD accelerated ions for radiation biology applications. With these transport system designs, the iP2 beamline is ready to house various application experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信