有效蒙特卡罗估计黑盒模型失真风险度量的重要度采样和机器学习综合方法

Sören Bettels, Stefan Weber
{"title":"有效蒙特卡罗估计黑盒模型失真风险度量的重要度采样和机器学习综合方法","authors":"Sören Bettels, Stefan Weber","doi":"arxiv-2408.02401","DOIUrl":null,"url":null,"abstract":"Distortion risk measures play a critical role in quantifying risks associated\nwith uncertain outcomes. Accurately estimating these risk measures in the\ncontext of computationally expensive simulation models that lack analytical\ntractability is fundamental to effective risk management and decision making.\nIn this paper, we propose an efficient important sampling method for distortion\nrisk measures in such models that reduces the computational cost through\nmachine learning. We demonstrate the applicability and efficiency of the Monte\nCarlo method in numerical experiments on various distortion risk measures and\nmodels.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models\",\"authors\":\"Sören Bettels, Stefan Weber\",\"doi\":\"arxiv-2408.02401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distortion risk measures play a critical role in quantifying risks associated\\nwith uncertain outcomes. Accurately estimating these risk measures in the\\ncontext of computationally expensive simulation models that lack analytical\\ntractability is fundamental to effective risk management and decision making.\\nIn this paper, we propose an efficient important sampling method for distortion\\nrisk measures in such models that reduces the computational cost through\\nmachine learning. We demonstrate the applicability and efficiency of the Monte\\nCarlo method in numerical experiments on various distortion risk measures and\\nmodels.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

失真风险度量在量化与不确定结果相关的风险方面发挥着至关重要的作用。在计算昂贵、缺乏可分析性的仿真模型中准确估计这些风险度量对于有效的风险管理和决策制定至关重要。在本文中,我们针对此类模型中的扭曲风险度量提出了一种高效的重要采样方法,该方法通过机器学习降低了计算成本。我们在各种变形风险度量和模型的数值实验中证明了蒙特卡罗方法的适用性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models
Distortion risk measures play a critical role in quantifying risks associated with uncertain outcomes. Accurately estimating these risk measures in the context of computationally expensive simulation models that lack analytical tractability is fundamental to effective risk management and decision making. In this paper, we propose an efficient important sampling method for distortion risk measures in such models that reduces the computational cost through machine learning. We demonstrate the applicability and efficiency of the Monte Carlo method in numerical experiments on various distortion risk measures and models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信