关于用四个正方形和一个 k 次幂素数进行 Diophantine 近似的说明

Yuhui Liu
{"title":"关于用四个正方形和一个 k 次幂素数进行 Diophantine 近似的说明","authors":"Yuhui Liu","doi":"10.1007/s13226-024-00672-7","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\lambda _1, \\lambda _2, \\lambda _3, \\lambda _4, \\mu \\)</span> be non-zero real numbers, not all negative, with <span>\\(\\lambda _1/\\lambda _2\\)</span> irrational. Suppose that <span>\\(k \\geqslant 3\\)</span> be an integer and <span>\\(\\eta \\)</span> be any given real number. In this paper, it is proved that for any real number <span>\\(\\sigma \\)</span> with <span>\\(0&lt;\\sigma &lt;\\frac{1}{\\vartheta (k)}\\)</span>, the inequality </p><span>$$\\begin{aligned} |\\lambda _1 p_1^2 + \\lambda _2 p_2^2+ \\lambda _3 p_3^2+ \\lambda _4 p_4^2 + \\mu p_5^k + \\eta | &lt; \\left( \\max \\limits _{1\\leqslant j \\leqslant 5}p_j\\right) ^{-\\sigma } \\end{aligned}$$</span><p>has infinitely many solutions in prime variables <span>\\(p_1,\\cdots ,p_5\\)</span>, where <span>\\(\\vartheta (k) = \\frac{32}{5}\\lceil {\\big (\\frac{k}{2} + 1 - [\\frac{k}{2}]\\big )2^{[\\frac{k}{2}]-1}}\\rceil \\)</span> for <span>\\(3\\leqslant k \\leqslant 9\\)</span> and <span>\\(\\vartheta (k) = \\frac{32}{5}\\lceil {\\big (\\frac{k}{2} - \\frac{1}{2}[\\frac{k}{2}]\\big )\\big ([\\frac{k}{2}]+1\\big )}\\rceil \\)</span> for <span>\\(k \\geqslant 10\\)</span>. This result constitutes an improvement upon that of Q. W. Mu, M. H. Zhu and P. Li [13].</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on Diophantine approximation with four squares and one k-th power of primes\",\"authors\":\"Yuhui Liu\",\"doi\":\"10.1007/s13226-024-00672-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\lambda _1, \\\\lambda _2, \\\\lambda _3, \\\\lambda _4, \\\\mu \\\\)</span> be non-zero real numbers, not all negative, with <span>\\\\(\\\\lambda _1/\\\\lambda _2\\\\)</span> irrational. Suppose that <span>\\\\(k \\\\geqslant 3\\\\)</span> be an integer and <span>\\\\(\\\\eta \\\\)</span> be any given real number. In this paper, it is proved that for any real number <span>\\\\(\\\\sigma \\\\)</span> with <span>\\\\(0&lt;\\\\sigma &lt;\\\\frac{1}{\\\\vartheta (k)}\\\\)</span>, the inequality </p><span>$$\\\\begin{aligned} |\\\\lambda _1 p_1^2 + \\\\lambda _2 p_2^2+ \\\\lambda _3 p_3^2+ \\\\lambda _4 p_4^2 + \\\\mu p_5^k + \\\\eta | &lt; \\\\left( \\\\max \\\\limits _{1\\\\leqslant j \\\\leqslant 5}p_j\\\\right) ^{-\\\\sigma } \\\\end{aligned}$$</span><p>has infinitely many solutions in prime variables <span>\\\\(p_1,\\\\cdots ,p_5\\\\)</span>, where <span>\\\\(\\\\vartheta (k) = \\\\frac{32}{5}\\\\lceil {\\\\big (\\\\frac{k}{2} + 1 - [\\\\frac{k}{2}]\\\\big )2^{[\\\\frac{k}{2}]-1}}\\\\rceil \\\\)</span> for <span>\\\\(3\\\\leqslant k \\\\leqslant 9\\\\)</span> and <span>\\\\(\\\\vartheta (k) = \\\\frac{32}{5}\\\\lceil {\\\\big (\\\\frac{k}{2} - \\\\frac{1}{2}[\\\\frac{k}{2}]\\\\big )\\\\big ([\\\\frac{k}{2}]+1\\\\big )}\\\\rceil \\\\)</span> for <span>\\\\(k \\\\geqslant 10\\\\)</span>. This result constitutes an improvement upon that of Q. W. Mu, M. H. Zhu and P. Li [13].</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00672-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00672-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让(\lambda _1,\lambda _2,\lambda _3,\lambda _4,\mu \)都是非零实数,不全是负数,其中(\lambda _1/\lambda _2)是无理数。假设 \(k \geqslant 3\) 是一个整数,并且 \(\eta \) 是任意给定的实数。本文证明,对于任何实数(0<sigma <frac{1}{\vartheta (k)}),不等式$$\begin{aligned}是不等式。|lambda _1 p_1^2 + \lambda _2 p_2^2+ \lambda _3 p_3^2+ \lambda _4 p_4^2 + \mu p_5^k + \eta | < \left( \max \limits _{1\leqslant j \leqslant 5}p_j\right) ^{\-sigma }\end{aligned}$$在素变量 \(p_1,\cdots,p_5\)中有无穷多个解、其中 \vartheta (k) = \frac{32}{5}\lceil {\big (\frac{k}{2} + 1 - [\frac{k}{2}]\big )2^{[\frac{k}{2}]-1}}rceil \) for \(3\leqslant k \leqslant 9\) and \(\vartheta (k) = \frac{32}{5}\lceil {\big (\frac{k}{2} - \frac{1}{2}[\frac{k}{2}]\big )\big ([\frac{k}{2}]+1\big )}rceil \) for \(k \geqslant 10\).这一结果是对 Q. W. Mu、M. H. Zhu 和 P. Li [13] 的结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on Diophantine approximation with four squares and one k-th power of primes

Let \(\lambda _1, \lambda _2, \lambda _3, \lambda _4, \mu \) be non-zero real numbers, not all negative, with \(\lambda _1/\lambda _2\) irrational. Suppose that \(k \geqslant 3\) be an integer and \(\eta \) be any given real number. In this paper, it is proved that for any real number \(\sigma \) with \(0<\sigma <\frac{1}{\vartheta (k)}\), the inequality

$$\begin{aligned} |\lambda _1 p_1^2 + \lambda _2 p_2^2+ \lambda _3 p_3^2+ \lambda _4 p_4^2 + \mu p_5^k + \eta | < \left( \max \limits _{1\leqslant j \leqslant 5}p_j\right) ^{-\sigma } \end{aligned}$$

has infinitely many solutions in prime variables \(p_1,\cdots ,p_5\), where \(\vartheta (k) = \frac{32}{5}\lceil {\big (\frac{k}{2} + 1 - [\frac{k}{2}]\big )2^{[\frac{k}{2}]-1}}\rceil \) for \(3\leqslant k \leqslant 9\) and \(\vartheta (k) = \frac{32}{5}\lceil {\big (\frac{k}{2} - \frac{1}{2}[\frac{k}{2}]\big )\big ([\frac{k}{2}]+1\big )}\rceil \) for \(k \geqslant 10\). This result constitutes an improvement upon that of Q. W. Mu, M. H. Zhu and P. Li [13].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信