{"title":"用于农用地膜的蜂窝状多孔再生纤维素气凝胶薄膜具有更强的散热性能","authors":"","doi":"10.1016/j.fbp.2024.07.021","DOIUrl":null,"url":null,"abstract":"<div><p>Agricultural films, essential to contemporary agricultural production, are mostly made from non-biodegradable petroleum-based materials. The use of such films, especially in high-temperature environments, contributes to elevated internal temperatures in direct sunlight, adversely affecting crop appearance and quality. In this work, rice straw was used as the raw material to prepare biodegradable chemically crosslinked regenerated cellulose aerogel films (RCAF-CC) by combining physical dissolution regeneration, chemical cross-linking, and freeze-drying. The resulting RCAF-CC is notable for its high middle-infrared emissivity and high solar reflectivity, which significantly aid in thermal dissipation for agricultural mulch by enhancing infrared radiation and solar reflection. Compared to traditional polyethylene films, RCAF-CC, with its superior radiative cooling properties and lower water vapor transport rate, has a significant advantage in the growth trend and survival rate of cherry radishes. It is worth noting that the RCAF-CC achieved the degradation rate of 74.4 % in the 100-day soil burial experiment, and the soybean seeds grown in the degraded soil grew well, showing excellent eco-friendliness. These results show that RCAF-CC can be an alternative source of traditional agricultural films, solving the problems of non-biodegradable and high internal temperatures of the films under direct sunlight.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Honeycomb porous regenerated cellulose aerogel films with enhanced thermal dissipation for agricultural mulch application\",\"authors\":\"\",\"doi\":\"10.1016/j.fbp.2024.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Agricultural films, essential to contemporary agricultural production, are mostly made from non-biodegradable petroleum-based materials. The use of such films, especially in high-temperature environments, contributes to elevated internal temperatures in direct sunlight, adversely affecting crop appearance and quality. In this work, rice straw was used as the raw material to prepare biodegradable chemically crosslinked regenerated cellulose aerogel films (RCAF-CC) by combining physical dissolution regeneration, chemical cross-linking, and freeze-drying. The resulting RCAF-CC is notable for its high middle-infrared emissivity and high solar reflectivity, which significantly aid in thermal dissipation for agricultural mulch by enhancing infrared radiation and solar reflection. Compared to traditional polyethylene films, RCAF-CC, with its superior radiative cooling properties and lower water vapor transport rate, has a significant advantage in the growth trend and survival rate of cherry radishes. It is worth noting that the RCAF-CC achieved the degradation rate of 74.4 % in the 100-day soil burial experiment, and the soybean seeds grown in the degraded soil grew well, showing excellent eco-friendliness. These results show that RCAF-CC can be an alternative source of traditional agricultural films, solving the problems of non-biodegradable and high internal temperatures of the films under direct sunlight.</p></div>\",\"PeriodicalId\":12134,\"journal\":{\"name\":\"Food and Bioproducts Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioproducts Processing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960308524001469\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308524001469","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Honeycomb porous regenerated cellulose aerogel films with enhanced thermal dissipation for agricultural mulch application
Agricultural films, essential to contemporary agricultural production, are mostly made from non-biodegradable petroleum-based materials. The use of such films, especially in high-temperature environments, contributes to elevated internal temperatures in direct sunlight, adversely affecting crop appearance and quality. In this work, rice straw was used as the raw material to prepare biodegradable chemically crosslinked regenerated cellulose aerogel films (RCAF-CC) by combining physical dissolution regeneration, chemical cross-linking, and freeze-drying. The resulting RCAF-CC is notable for its high middle-infrared emissivity and high solar reflectivity, which significantly aid in thermal dissipation for agricultural mulch by enhancing infrared radiation and solar reflection. Compared to traditional polyethylene films, RCAF-CC, with its superior radiative cooling properties and lower water vapor transport rate, has a significant advantage in the growth trend and survival rate of cherry radishes. It is worth noting that the RCAF-CC achieved the degradation rate of 74.4 % in the 100-day soil burial experiment, and the soybean seeds grown in the degraded soil grew well, showing excellent eco-friendliness. These results show that RCAF-CC can be an alternative source of traditional agricultural films, solving the problems of non-biodegradable and high internal temperatures of the films under direct sunlight.
期刊介绍:
Official Journal of the European Federation of Chemical Engineering:
Part C
FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering.
Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing.
The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those:
• Primarily concerned with food formulation
• That use experimental design techniques to obtain response surfaces but gain little insight from them
• That are empirical and ignore established mechanistic models, e.g., empirical drying curves
• That are primarily concerned about sensory evaluation and colour
• Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material,
• Containing only chemical analyses of biological materials.