不可分解多项式环的不可判定性

IF 0.4 4区 数学 Q4 LOGIC
Marco Barone, Nicolás Caro-Montoya, Eudes Naziazeno
{"title":"不可分解多项式环的不可判定性","authors":"Marco Barone, Nicolás Caro-Montoya, Eudes Naziazeno","doi":"10.1007/s00153-024-00936-3","DOIUrl":null,"url":null,"abstract":"<p>By using algebraic properties of (commutative unital) indecomposable polynomial rings we achieve results concerning their first-order theory, namely: interpretability of arithmetic and a uniform proof of undecidability of their full theory, both in the language of rings without parameters. This vastly extends the scope of a method due to <span>Raphael Robinson</span>, which deals with a restricted class of polynomial integral domains.</p>","PeriodicalId":8350,"journal":{"name":"Archive for Mathematical Logic","volume":"78 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undecidability of indecomposable polynomial rings\",\"authors\":\"Marco Barone, Nicolás Caro-Montoya, Eudes Naziazeno\",\"doi\":\"10.1007/s00153-024-00936-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By using algebraic properties of (commutative unital) indecomposable polynomial rings we achieve results concerning their first-order theory, namely: interpretability of arithmetic and a uniform proof of undecidability of their full theory, both in the language of rings without parameters. This vastly extends the scope of a method due to <span>Raphael Robinson</span>, which deals with a restricted class of polynomial integral domains.</p>\",\"PeriodicalId\":8350,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00153-024-00936-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00153-024-00936-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

通过使用(交换单元)不可分解多项式环的代数性质,我们获得了有关其一阶理论的结果,即:算术的可解释性和其完整理论的不可判定性的统一证明,两者均使用无参数环语言。这极大地扩展了拉斐尔-罗宾逊(Raphael Robinson)提出的方法的范围,该方法处理的是一类受限制的多项式积分域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undecidability of indecomposable polynomial rings

By using algebraic properties of (commutative unital) indecomposable polynomial rings we achieve results concerning their first-order theory, namely: interpretability of arithmetic and a uniform proof of undecidability of their full theory, both in the language of rings without parameters. This vastly extends the scope of a method due to Raphael Robinson, which deals with a restricted class of polynomial integral domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
45
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信