第一列钩码长度序列中具有固定点的分区

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Philip Cuthbertson, David J. Hemmer, Brian Hopkins, William J. Keith
{"title":"第一列钩码长度序列中具有固定点的分区","authors":"Philip Cuthbertson, David J. Hemmer, Brian Hopkins, William J. Keith","doi":"10.1007/s00026-024-00714-1","DOIUrl":null,"url":null,"abstract":"<p>Recently, Blecher and Knopfmacher applied the notion of fixed points to integer partitions. This has already been generalized and refined in various ways such as <i>h</i>-fixed points for an integer parameter <i>h</i> by Hopkins and Sellers. Here, we consider the sequence of first column hook lengths in the Young diagram of a partition and corresponding <i>fixed hooks</i>. We enumerate these, using both generating function and combinatorial proofs, and find that they match occurrences of part sizes equal to their multiplicity. We establish connections to work of Andrews and Merca on truncations of the pentagonal number theorem and classes of partitions partially characterized by certain minimal excluded parts (mex).</p>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitions with Fixed Points in the Sequence of First-Column Hook Lengths\",\"authors\":\"Philip Cuthbertson, David J. Hemmer, Brian Hopkins, William J. Keith\",\"doi\":\"10.1007/s00026-024-00714-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, Blecher and Knopfmacher applied the notion of fixed points to integer partitions. This has already been generalized and refined in various ways such as <i>h</i>-fixed points for an integer parameter <i>h</i> by Hopkins and Sellers. Here, we consider the sequence of first column hook lengths in the Young diagram of a partition and corresponding <i>fixed hooks</i>. We enumerate these, using both generating function and combinatorial proofs, and find that they match occurrences of part sizes equal to their multiplicity. We establish connections to work of Andrews and Merca on truncations of the pentagonal number theorem and classes of partitions partially characterized by certain minimal excluded parts (mex).</p>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00026-024-00714-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00026-024-00714-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最近,Blecher 和 Knopfmacher 将定点概念应用于整数分区。霍普金斯(Hopkins)和塞勒斯(Sellers)已经以各种方式对这一概念进行了概括和细化,例如整数参数 h 的 h 定点。在这里,我们考虑的是分区扬图中第一列钩长的序列和相应的固定钩。我们利用生成函数和组合证明枚举了这些序列,并发现它们与等于其倍数的部分大小的出现相匹配。我们建立了与安德鲁斯和梅尔卡关于五边形数截断定理的研究以及由某些最小排除部分(mex)部分表征的分区类的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partitions with Fixed Points in the Sequence of First-Column Hook Lengths

Partitions with Fixed Points in the Sequence of First-Column Hook Lengths

Recently, Blecher and Knopfmacher applied the notion of fixed points to integer partitions. This has already been generalized and refined in various ways such as h-fixed points for an integer parameter h by Hopkins and Sellers. Here, we consider the sequence of first column hook lengths in the Young diagram of a partition and corresponding fixed hooks. We enumerate these, using both generating function and combinatorial proofs, and find that they match occurrences of part sizes equal to their multiplicity. We establish connections to work of Andrews and Merca on truncations of the pentagonal number theorem and classes of partitions partially characterized by certain minimal excluded parts (mex).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信