氮含量对反应溅射氮化铌钛薄膜结构和超导性的影响

L Zhang, Y L Zhong, J J Xie, H Jin, W B Zhao, W Peng, L Chen and Z Wang
{"title":"氮含量对反应溅射氮化铌钛薄膜结构和超导性的影响","authors":"L Zhang, Y L Zhong, J J Xie, H Jin, W B Zhao, W Peng, L Chen and Z Wang","doi":"10.1088/1361-6668/ad6adc","DOIUrl":null,"url":null,"abstract":"In this research, we have studied the structural and electrical properties of NbTiN films deposited on MgO and SiO2/Si substrates by reactive dc sputtering. The formation of stoichiometric NbTiN is very sensitive to N concentration and can be easily adjusted by changing the discharge current and Ar: N2 ratio along the current–voltage curves (IVCs) of the NbTi target. Excessive or insufficient N concentration in NbTiN leads to sublattice expansion or distortion, resulting in a decrease in critical temperature Tc. At Ar: N2 ratio of 30:4 and discharge current of 2.2 A, Tc as high as 15.8 K and 15.3 K has been obtained for 200 nm thick NbTiN/MgO and NbTiN/SiO2/Si samples, respectively. In addition, the critical density Jc of the 4 μm-wide and 7 nm-thick NbTiN film grown on MgO substrate at 2 K reaches 19.2 MA cm−2, which is approximately twice as high as the 10.9 MA cm−2 of the same-sized NbTiN film grown on SiO2/Si substrate. Therefore, by further fine-tuning the N concentration in combination with the IVCs of the target, high-quality stoichiometric NbTiN can be obtained.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of nitrogen content on the structure and superconductivity of reactive sputtered NbTiN thin films\",\"authors\":\"L Zhang, Y L Zhong, J J Xie, H Jin, W B Zhao, W Peng, L Chen and Z Wang\",\"doi\":\"10.1088/1361-6668/ad6adc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we have studied the structural and electrical properties of NbTiN films deposited on MgO and SiO2/Si substrates by reactive dc sputtering. The formation of stoichiometric NbTiN is very sensitive to N concentration and can be easily adjusted by changing the discharge current and Ar: N2 ratio along the current–voltage curves (IVCs) of the NbTi target. Excessive or insufficient N concentration in NbTiN leads to sublattice expansion or distortion, resulting in a decrease in critical temperature Tc. At Ar: N2 ratio of 30:4 and discharge current of 2.2 A, Tc as high as 15.8 K and 15.3 K has been obtained for 200 nm thick NbTiN/MgO and NbTiN/SiO2/Si samples, respectively. In addition, the critical density Jc of the 4 μm-wide and 7 nm-thick NbTiN film grown on MgO substrate at 2 K reaches 19.2 MA cm−2, which is approximately twice as high as the 10.9 MA cm−2 of the same-sized NbTiN film grown on SiO2/Si substrate. Therefore, by further fine-tuning the N concentration in combination with the IVCs of the target, high-quality stoichiometric NbTiN can be obtained.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad6adc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad6adc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了通过反应直流溅射沉积在氧化镁和二氧化硅/硅基底上的铌钛氮薄膜的结构和电气特性。化学计量铌钛氮的形成对 N 浓度非常敏感,可以通过改变放电电流和 Ar:通过沿 NbTi 靶材的电流-电压曲线 (IVC) 改变放电电流和 Ar:N2 比率,可以很容易地调整 NbTiN 的形成。NbTiN 中的 N 浓度过高或过低都会导致亚晶格膨胀或变形,从而降低临界温度 Tc。在 Ar:在 Ar:N2 比率为 30:4 和放电电流为 2.2 A 的条件下,200 nm 厚的 NbTiN/MgO 和 NbTiN/SiO2/Si 样品的临界温度分别高达 15.8 K 和 15.3 K。此外,在 2 K 下,生长在氧化镁衬底上的 4 μm 宽、7 nm 厚的铌钛氮薄膜的临界密度 Jc 达到 19.2 MA cm-2,约为生长在 SiO2/Si 衬底上的相同尺寸铌钛氮薄膜的 10.9 MA cm-2 的两倍。因此,通过结合靶材的 IVC 进一步微调氮浓度,可以获得高质量的化学计量铌钛氮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of nitrogen content on the structure and superconductivity of reactive sputtered NbTiN thin films
In this research, we have studied the structural and electrical properties of NbTiN films deposited on MgO and SiO2/Si substrates by reactive dc sputtering. The formation of stoichiometric NbTiN is very sensitive to N concentration and can be easily adjusted by changing the discharge current and Ar: N2 ratio along the current–voltage curves (IVCs) of the NbTi target. Excessive or insufficient N concentration in NbTiN leads to sublattice expansion or distortion, resulting in a decrease in critical temperature Tc. At Ar: N2 ratio of 30:4 and discharge current of 2.2 A, Tc as high as 15.8 K and 15.3 K has been obtained for 200 nm thick NbTiN/MgO and NbTiN/SiO2/Si samples, respectively. In addition, the critical density Jc of the 4 μm-wide and 7 nm-thick NbTiN film grown on MgO substrate at 2 K reaches 19.2 MA cm−2, which is approximately twice as high as the 10.9 MA cm−2 of the same-sized NbTiN film grown on SiO2/Si substrate. Therefore, by further fine-tuning the N concentration in combination with the IVCs of the target, high-quality stoichiometric NbTiN can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信