混流式水轮机在部分负荷运行时的短时和快速瞬态负荷

IF 4.1 2区 工程技术 Q1 MECHANICS
Xing Zhou, Xiangyu Dai, Quanshui Huang, Xiaodan Tang, Zhipeng Bai, Michel J. Cervantes
{"title":"混流式水轮机在部分负荷运行时的短时和快速瞬态负荷","authors":"Xing Zhou, Xiangyu Dai, Quanshui Huang, Xiaodan Tang, Zhipeng Bai, Michel J. Cervantes","doi":"10.1063/5.0217373","DOIUrl":null,"url":null,"abstract":"As hydropower is integrated into the renewable energy system, the turbine components are liable to many loads variation for regulation. The loads experienced under transient operation need to be accounted for and understood to develop adequate mitigation technique and strategies. To identify possible risks occurring during such short and fast transients, we investigate the nonlinear growth and time delay effects of pressure fluctuations, as well as the unsteady flow field evolution for a Francis turbine under load reduction in the part load regime. A two-stage transient process analytical framework is proposed via signal processing and vortex identification methods, including main transient and post-transient stages. In the main transient stage, the dominant frequency of pressure fluctuations within the draft tube shifts from 0.32·fn to 0.24·fn, accompanied by a fivefold increase in the amplitude. Furthermore, low-frequency pressure fluctuations in a wider range are identified (0–2·fn), source of possible resonance of power plant structures. The maximum pressure is reached in the post-transient stage after the end of the guide vane closure and is 50% larger than the maximum value in the main transient stage. When comparing the two components of pressure fluctuations within the draft tube, the synchronous component increases slowly but reaches the peak faster, which can be explained by the evolution of instantaneous vortex structure investigated with proper orthogonal decomposition. The findings are useful to ascertain possible risk factors along with the investigation of the evolution of non-stationary flow field in the context of frequent turbine load variations.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loads experienced by a Francis turbine during short and fast transient under part load operation\",\"authors\":\"Xing Zhou, Xiangyu Dai, Quanshui Huang, Xiaodan Tang, Zhipeng Bai, Michel J. Cervantes\",\"doi\":\"10.1063/5.0217373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As hydropower is integrated into the renewable energy system, the turbine components are liable to many loads variation for regulation. The loads experienced under transient operation need to be accounted for and understood to develop adequate mitigation technique and strategies. To identify possible risks occurring during such short and fast transients, we investigate the nonlinear growth and time delay effects of pressure fluctuations, as well as the unsteady flow field evolution for a Francis turbine under load reduction in the part load regime. A two-stage transient process analytical framework is proposed via signal processing and vortex identification methods, including main transient and post-transient stages. In the main transient stage, the dominant frequency of pressure fluctuations within the draft tube shifts from 0.32·fn to 0.24·fn, accompanied by a fivefold increase in the amplitude. Furthermore, low-frequency pressure fluctuations in a wider range are identified (0–2·fn), source of possible resonance of power plant structures. The maximum pressure is reached in the post-transient stage after the end of the guide vane closure and is 50% larger than the maximum value in the main transient stage. When comparing the two components of pressure fluctuations within the draft tube, the synchronous component increases slowly but reaches the peak faster, which can be explained by the evolution of instantaneous vortex structure investigated with proper orthogonal decomposition. The findings are useful to ascertain possible risk factors along with the investigation of the evolution of non-stationary flow field in the context of frequent turbine load variations.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0217373\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0217373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

由于水力发电已被纳入可再生能源系统,水轮机部件可能会因调节而受到许多负载变化的影响。需要考虑和了解瞬态运行下的负载,以制定适当的缓解技术和策略。为了识别在这种短时间快速瞬态过程中可能出现的风险,我们研究了压力波动的非线性增长和时间延迟效应,以及混流式水轮机在部分负荷状态下减载时的非稳态流场演变。通过信号处理和涡流识别方法,我们提出了一个两阶段瞬态过程分析框架,包括主瞬态阶段和后瞬态阶段。在主瞬态阶段,牵伸管内压力波动的主频从 0.32-fn 变为 0.24-fn,同时振幅增加了五倍。此外,还发现了范围更广的低频压力波动(0-2-fn),这可能是发电厂结构共振的来源。最大压力在导叶关闭结束后的后瞬态阶段达到,比主瞬态阶段的最大值大 50%。在比较牵伸管内压力波动的两个分量时,同步分量增加缓慢,但达到峰值的速度较快,这可以用适当正交分解研究的瞬时涡旋结构的演变来解释。这些发现有助于确定可能的风险因素,以及在涡轮机负荷频繁变化的情况下对非稳态流场演变的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loads experienced by a Francis turbine during short and fast transient under part load operation
As hydropower is integrated into the renewable energy system, the turbine components are liable to many loads variation for regulation. The loads experienced under transient operation need to be accounted for and understood to develop adequate mitigation technique and strategies. To identify possible risks occurring during such short and fast transients, we investigate the nonlinear growth and time delay effects of pressure fluctuations, as well as the unsteady flow field evolution for a Francis turbine under load reduction in the part load regime. A two-stage transient process analytical framework is proposed via signal processing and vortex identification methods, including main transient and post-transient stages. In the main transient stage, the dominant frequency of pressure fluctuations within the draft tube shifts from 0.32·fn to 0.24·fn, accompanied by a fivefold increase in the amplitude. Furthermore, low-frequency pressure fluctuations in a wider range are identified (0–2·fn), source of possible resonance of power plant structures. The maximum pressure is reached in the post-transient stage after the end of the guide vane closure and is 50% larger than the maximum value in the main transient stage. When comparing the two components of pressure fluctuations within the draft tube, the synchronous component increases slowly but reaches the peak faster, which can be explained by the evolution of instantaneous vortex structure investigated with proper orthogonal decomposition. The findings are useful to ascertain possible risk factors along with the investigation of the evolution of non-stationary flow field in the context of frequent turbine load variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信