使用非连续伽勒金方法进行基于代型的空气动力学形状优化的梯度改进采样计划

IF 4.1 2区 工程技术 Q1 MECHANICS
Yiwei Feng, Lili Lv, Xiaomeng Yan, Bangcheng Ai, Tiegang Liu
{"title":"使用非连续伽勒金方法进行基于代型的空气动力学形状优化的梯度改进采样计划","authors":"Yiwei Feng, Lili Lv, Xiaomeng Yan, Bangcheng Ai, Tiegang Liu","doi":"10.1063/5.0218931","DOIUrl":null,"url":null,"abstract":"Surrogate-based optimization (SBO) is a powerful approach for global optimization of high-dimensional expensive black-box functions, commonly consisting of four modules: design of experiment, function evaluation, surrogate construction, and infill sampling criterion. This work develops a robust and efficient SBO framework for aerodynamic shape optimization using discontinuous Galerkin methods as the computational fluid dynamics evaluation. Innovatively, the prior adjoint gradient information of the baseline shape is used to improve the performance of the sampling plan in the preliminary design of the experiment stage and further improve the robustness and efficiency of the construction of surrogate(s). Specifically, the initial sample points along the direction of objective rise have a high probability of being transformed into feasible points in a subspace of objective descending. Numerical experiments verified that the proposed gradient-improved sampling plan is capable of stably exploring the design space of objective descending and constraint satisfaction even with limited sample points, which leads to a stable improvement of the resultant aerodynamic performance of the final optimized shape.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gradient-improved sampling plan for surrogate-based aerodynamic shape optimization using discontinuous Galerkin methods\",\"authors\":\"Yiwei Feng, Lili Lv, Xiaomeng Yan, Bangcheng Ai, Tiegang Liu\",\"doi\":\"10.1063/5.0218931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surrogate-based optimization (SBO) is a powerful approach for global optimization of high-dimensional expensive black-box functions, commonly consisting of four modules: design of experiment, function evaluation, surrogate construction, and infill sampling criterion. This work develops a robust and efficient SBO framework for aerodynamic shape optimization using discontinuous Galerkin methods as the computational fluid dynamics evaluation. Innovatively, the prior adjoint gradient information of the baseline shape is used to improve the performance of the sampling plan in the preliminary design of the experiment stage and further improve the robustness and efficiency of the construction of surrogate(s). Specifically, the initial sample points along the direction of objective rise have a high probability of being transformed into feasible points in a subspace of objective descending. Numerical experiments verified that the proposed gradient-improved sampling plan is capable of stably exploring the design space of objective descending and constraint satisfaction even with limited sample points, which leads to a stable improvement of the resultant aerodynamic performance of the final optimized shape.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218931\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0218931","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

基于代理的优化(SBO)是对高维昂贵的黑盒函数进行全局优化的一种强大方法,通常由四个模块组成:实验设计、函数评估、代理构建和填充采样准则。本研究利用非连续加勒金方法作为计算流体动力学评估,为空气动力学形状优化开发了一种稳健高效的 SBO 框架。创新性地利用基线形状的先验临界梯度信息来改善实验初步设计阶段的采样计划性能,并进一步提高代型构建的鲁棒性和效率。具体来说,沿目标上升方向的初始采样点有很大概率转化为目标下降子空间中的可行点。数值实验验证了所提出的梯度改进采样方案即使在采样点有限的情况下也能稳定地探索目标下降和约束满足的设计空间,从而稳定地提高最终优化形状的气动性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gradient-improved sampling plan for surrogate-based aerodynamic shape optimization using discontinuous Galerkin methods
Surrogate-based optimization (SBO) is a powerful approach for global optimization of high-dimensional expensive black-box functions, commonly consisting of four modules: design of experiment, function evaluation, surrogate construction, and infill sampling criterion. This work develops a robust and efficient SBO framework for aerodynamic shape optimization using discontinuous Galerkin methods as the computational fluid dynamics evaluation. Innovatively, the prior adjoint gradient information of the baseline shape is used to improve the performance of the sampling plan in the preliminary design of the experiment stage and further improve the robustness and efficiency of the construction of surrogate(s). Specifically, the initial sample points along the direction of objective rise have a high probability of being transformed into feasible points in a subspace of objective descending. Numerical experiments verified that the proposed gradient-improved sampling plan is capable of stably exploring the design space of objective descending and constraint satisfaction even with limited sample points, which leads to a stable improvement of the resultant aerodynamic performance of the final optimized shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信