维纳混沌的经验极限定理

Pub Date : 2024-07-27 DOI:10.1016/j.spl.2024.110222
Shuyang Bai, Jiemiao Chen
{"title":"维纳混沌的经验极限定理","authors":"Shuyang Bai,&nbsp;Jiemiao Chen","doi":"10.1016/j.spl.2024.110222","DOIUrl":null,"url":null,"abstract":"<div><p>We consider empirical measures in a triangular array setup with underlying distributions varying as sample size grows. We study asymptotic properties of multiple integrals with respect to normalized empirical measures. Limit theorems involving series of multiple Wiener–Itô integrals are established.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical limit theorems for Wiener chaos\",\"authors\":\"Shuyang Bai,&nbsp;Jiemiao Chen\",\"doi\":\"10.1016/j.spl.2024.110222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider empirical measures in a triangular array setup with underlying distributions varying as sample size grows. We study asymptotic properties of multiple integrals with respect to normalized empirical measures. Limit theorems involving series of multiple Wiener–Itô integrals are established.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了三角阵列设置中的经验量度,其基本分布随着样本量的增加而变化。我们研究了关于归一化经验度量的多重积分的渐近特性。我们建立了涉及多重维纳-伊托积分序列的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Empirical limit theorems for Wiener chaos

We consider empirical measures in a triangular array setup with underlying distributions varying as sample size grows. We study asymptotic properties of multiple integrals with respect to normalized empirical measures. Limit theorems involving series of multiple Wiener–Itô integrals are established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信