具有非 Lipschitz 条件的 Hilfer 分数随机受电弓方程的平均原理

Pub Date : 2024-08-02 DOI:10.1016/j.spl.2024.110221
Ramkumar Kasinathan , Ravikumar Kasinathan , Dimplekumar Chalishajar , Dumitru Baleanu , Varshini Sandrasekaran
{"title":"具有非 Lipschitz 条件的 Hilfer 分数随机受电弓方程的平均原理","authors":"Ramkumar Kasinathan ,&nbsp;Ravikumar Kasinathan ,&nbsp;Dimplekumar Chalishajar ,&nbsp;Dumitru Baleanu ,&nbsp;Varshini Sandrasekaran","doi":"10.1016/j.spl.2024.110221","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to presenting an averaging principle for Hilfer fractional stochastic differential pantograph equations (HFSDPEs). The probability of the solutions to averaged stochastic systems in the means square sence can be used to approximate the solutions to HFSDPEs under appropriate non-Lipschitz conditions. Furthermore, certain previous results have been significantly generalised by our results. Finally, an example is given to demonstrate the feasibility of the results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The averaging principle of Hilfer fractional stochastic pantograph equations with non-Lipschitz conditions\",\"authors\":\"Ramkumar Kasinathan ,&nbsp;Ravikumar Kasinathan ,&nbsp;Dimplekumar Chalishajar ,&nbsp;Dumitru Baleanu ,&nbsp;Varshini Sandrasekaran\",\"doi\":\"10.1016/j.spl.2024.110221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to presenting an averaging principle for Hilfer fractional stochastic differential pantograph equations (HFSDPEs). The probability of the solutions to averaged stochastic systems in the means square sence can be used to approximate the solutions to HFSDPEs under appropriate non-Lipschitz conditions. Furthermore, certain previous results have been significantly generalised by our results. Finally, an example is given to demonstrate the feasibility of the results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要介绍希尔费分数随机微分泛函方程(HFSDPEs)的平均原理。在适当的非 Lipschitz 条件下,平均随机系统解的均方概率可用于近似 HFSDPE 的解。此外,我们的结果还大大推广了之前的某些结果。最后,举例说明了这些结果的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The averaging principle of Hilfer fractional stochastic pantograph equations with non-Lipschitz conditions

This paper is devoted to presenting an averaging principle for Hilfer fractional stochastic differential pantograph equations (HFSDPEs). The probability of the solutions to averaged stochastic systems in the means square sence can be used to approximate the solutions to HFSDPEs under appropriate non-Lipschitz conditions. Furthermore, certain previous results have been significantly generalised by our results. Finally, an example is given to demonstrate the feasibility of the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信