针对高维均值问题的自适应秩检验

Pub Date : 2024-07-26 DOI:10.1016/j.spl.2024.110226
Yu Zhang, Long Feng
{"title":"针对高维均值问题的自适应秩检验","authors":"Yu Zhang,&nbsp;Long Feng","doi":"10.1016/j.spl.2024.110226","DOIUrl":null,"url":null,"abstract":"<div><p>The Wilcoxon signed-rank test and the Wilcoxon–Mann–Whitney test are commonly employed in one sample and two sample mean tests for one-dimensional hypothesis problems. For high-dimensional mean test problems, we calculate the asymptotic distribution of the maximum of rank statistics for each variable and suggest a max-type test. This max-type test is then merged with a sum-type test, based on their asymptotic independence offered by stationary and strong mixing assumptions. Our numerical studies reveal that this combined test demonstrates robustness and superiority over other methods, especially for heavy-tailed distributions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive rank-based tests for high dimensional mean problems\",\"authors\":\"Yu Zhang,&nbsp;Long Feng\",\"doi\":\"10.1016/j.spl.2024.110226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Wilcoxon signed-rank test and the Wilcoxon–Mann–Whitney test are commonly employed in one sample and two sample mean tests for one-dimensional hypothesis problems. For high-dimensional mean test problems, we calculate the asymptotic distribution of the maximum of rank statistics for each variable and suggest a max-type test. This max-type test is then merged with a sum-type test, based on their asymptotic independence offered by stationary and strong mixing assumptions. Our numerical studies reveal that this combined test demonstrates robustness and superiority over other methods, especially for heavy-tailed distributions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Wilcoxon 符号秩检验和 Wilcoxon-Mann-Whitney 检验常用于一维假设问题的单样本和双样本均值检验。对于高维均值检验问题,我们会计算每个变量秩统计量最大值的渐近分布,并建议采用最大值类型检验。然后,基于静态假设和强混合假设提供的渐近独立性,将这种最大类型检验与和类型检验合并。我们的数值研究表明,与其他方法相比,这种组合检验具有稳健性和优越性,特别是对于重尾分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Adaptive rank-based tests for high dimensional mean problems

The Wilcoxon signed-rank test and the Wilcoxon–Mann–Whitney test are commonly employed in one sample and two sample mean tests for one-dimensional hypothesis problems. For high-dimensional mean test problems, we calculate the asymptotic distribution of the maximum of rank statistics for each variable and suggest a max-type test. This max-type test is then merged with a sum-type test, based on their asymptotic independence offered by stationary and strong mixing assumptions. Our numerical studies reveal that this combined test demonstrates robustness and superiority over other methods, especially for heavy-tailed distributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信