大集合第二部分:用球形傅立叶神经算子生成的后报大集合的特性

Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis OBrien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, Jared Willard
{"title":"大集合第二部分:用球形傅立叶神经算子生成的后报大集合的特性","authors":"Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis OBrien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, Jared Willard","doi":"arxiv-2408.01581","DOIUrl":null,"url":null,"abstract":"In Part I, we created an ensemble based on Spherical Fourier Neural\nOperators. As initial condition perturbations, we used bred vectors, and as\nmodel perturbations, we used multiple checkpoints trained independently from\nscratch. Based on diagnostics that assess the ensemble's physical fidelity, our\nensemble has comparable performance to operational weather forecasting systems.\nHowever, it requires several orders of magnitude fewer computational resources.\nHere in Part II, we generate a huge ensemble (HENS), with 7,424 members\ninitialized each day of summer 2023. We enumerate the technical requirements\nfor running huge ensembles at this scale. HENS precisely samples the tails of\nthe forecast distribution and presents a detailed sampling of internal\nvariability. For extreme climate statistics, HENS samples events 4$\\sigma$ away\nfrom the ensemble mean. At each grid cell, HENS improves the skill of the most\naccurate ensemble member and enhances coverage of possible future trajectories.\nAs a weather forecasting model, HENS issues extreme weather forecasts with\nbetter uncertainty quantification. It also reduces the probability of outlier\nevents, in which the verification value lies outside the ensemble forecast\ndistribution.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators\",\"authors\":\"Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis OBrien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, Jared Willard\",\"doi\":\"arxiv-2408.01581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Part I, we created an ensemble based on Spherical Fourier Neural\\nOperators. As initial condition perturbations, we used bred vectors, and as\\nmodel perturbations, we used multiple checkpoints trained independently from\\nscratch. Based on diagnostics that assess the ensemble's physical fidelity, our\\nensemble has comparable performance to operational weather forecasting systems.\\nHowever, it requires several orders of magnitude fewer computational resources.\\nHere in Part II, we generate a huge ensemble (HENS), with 7,424 members\\ninitialized each day of summer 2023. We enumerate the technical requirements\\nfor running huge ensembles at this scale. HENS precisely samples the tails of\\nthe forecast distribution and presents a detailed sampling of internal\\nvariability. For extreme climate statistics, HENS samples events 4$\\\\sigma$ away\\nfrom the ensemble mean. At each grid cell, HENS improves the skill of the most\\naccurate ensemble member and enhances coverage of possible future trajectories.\\nAs a weather forecasting model, HENS issues extreme weather forecasts with\\nbetter uncertainty quantification. It also reduces the probability of outlier\\nevents, in which the verification value lies outside the ensemble forecast\\ndistribution.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在第一部分中,我们创建了一个基于球形傅立叶神经运算器的集合。作为初始条件扰动,我们使用了培育的向量;作为模型扰动,我们使用了从零开始独立训练的多个检查点。在第二部分中,我们生成了一个庞大的集合(HENS),在2023年夏季每天初始化7424个成员。我们列举了在这种规模下运行庞大集合的技术要求。HENS 对预测分布的尾部进行了精确采样,并对内部可变性进行了详细采样。对于极端气候统计数据,HENS采样的事件与集合平均值相差4$\sigma$。在每个网格单元中,HENS提高了最精确集合成员的技能,并增强了对未来可能轨迹的覆盖。作为天气预报模型,HENS 可发布不确定性量化更高的极端天气预报,同时还可降低验证值位于集合预报分布之外的极端事件发生概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators
In Part I, we created an ensemble based on Spherical Fourier Neural Operators. As initial condition perturbations, we used bred vectors, and as model perturbations, we used multiple checkpoints trained independently from scratch. Based on diagnostics that assess the ensemble's physical fidelity, our ensemble has comparable performance to operational weather forecasting systems. However, it requires several orders of magnitude fewer computational resources. Here in Part II, we generate a huge ensemble (HENS), with 7,424 members initialized each day of summer 2023. We enumerate the technical requirements for running huge ensembles at this scale. HENS precisely samples the tails of the forecast distribution and presents a detailed sampling of internal variability. For extreme climate statistics, HENS samples events 4$\sigma$ away from the ensemble mean. At each grid cell, HENS improves the skill of the most accurate ensemble member and enhances coverage of possible future trajectories. As a weather forecasting model, HENS issues extreme weather forecasts with better uncertainty quantification. It also reduces the probability of outlier events, in which the verification value lies outside the ensemble forecast distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信