4/3 矩形平铺下限

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Grzegorz Głuch, Krzysztof Loryś
{"title":"4/3 矩形平铺下限","authors":"Grzegorz Głuch,&nbsp;Krzysztof Loryś","doi":"10.1016/j.ipl.2024.106523","DOIUrl":null,"url":null,"abstract":"<div><p>The problem that we consider is the following: given an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> array <em>A</em> of positive numbers and a natural number <em>p</em>, find a tiling using at most <em>p</em> rectangles (which means that each array element must be covered by some rectangle and no two rectangles must overlap) that minimizes the maximum weight of any rectangle (the weight of a rectangle is the sum of elements which are covered by it). We prove that it is NP-hard to approximate this problem to within a factor of <strong>1</strong><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> (the previous best result was <span><math><mn>1</mn><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>).</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"188 ","pages":"Article 106523"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4/3 rectangle tiling lower bound\",\"authors\":\"Grzegorz Głuch,&nbsp;Krzysztof Loryś\",\"doi\":\"10.1016/j.ipl.2024.106523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem that we consider is the following: given an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> array <em>A</em> of positive numbers and a natural number <em>p</em>, find a tiling using at most <em>p</em> rectangles (which means that each array element must be covered by some rectangle and no two rectangles must overlap) that minimizes the maximum weight of any rectangle (the weight of a rectangle is the sum of elements which are covered by it). We prove that it is NP-hard to approximate this problem to within a factor of <strong>1</strong><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> (the previous best result was <span><math><mn>1</mn><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>).</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"188 \",\"pages\":\"Article 106523\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002001902400053X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002001902400053X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们所考虑的问题如下:给定一个正数数组和一个自然数 ,找出一个最多使用矩形(这意味着每个数组元素都必须被某个矩形覆盖,且没有两个矩形必须重叠)的平铺法,使任意矩形的最大权重最小(矩形的权重是被其覆盖的元素之和)。我们证明,要把这个问题逼近到一个因子的范围内是 NP-hard(之前的最佳结果是 )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4/3 rectangle tiling lower bound

The problem that we consider is the following: given an n×n array A of positive numbers and a natural number p, find a tiling using at most p rectangles (which means that each array element must be covered by some rectangle and no two rectangles must overlap) that minimizes the maximum weight of any rectangle (the weight of a rectangle is the sum of elements which are covered by it). We prove that it is NP-hard to approximate this problem to within a factor of 113 (the previous best result was 114).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信