用于光场图像超分辨率的高分辨率增强型跨子空间融合网络

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shixu Ying , Shubo Zhou , Xue-Qin Jiang , Yongbin Gao , Feng Pan , Zhijun Fang
{"title":"用于光场图像超分辨率的高分辨率增强型跨子空间融合网络","authors":"Shixu Ying ,&nbsp;Shubo Zhou ,&nbsp;Xue-Qin Jiang ,&nbsp;Yongbin Gao ,&nbsp;Feng Pan ,&nbsp;Zhijun Fang","doi":"10.1016/j.displa.2024.102803","DOIUrl":null,"url":null,"abstract":"<div><p>Light field (LF) images offer abundant spatial and angular information, therefore, the combination of which is beneficial in the performance of LF image superresolution (LF image SR). Currently, existing methods often decompose the 4D LF data into low-dimensional subspaces for individual feature extraction and fusion for LF image SR. However, the performance of these methods is restricted because of lacking effective correlations between subspaces and missing out on crucial complementary information for capturing rich texture details. To address this, we propose a cross-subspace fusion network for LF spatial SR (i.e., CSFNet). Specifically, we design the progressive cross-subspace fusion module (PCSFM), which can progressively establish cross-subspace correlations based on a cross-attention mechanism to comprehensively enrich LF information. Additionally, we propose a high-resolution adaptive enhancement group (HR-AEG), which preserves the texture and edge details in the high resolution feature domain by employing a multibranch enhancement method and an adaptive weight strategy. The experimental results demonstrate that our approach achieves highly competitive performance on multiple LF datasets compared to state-of-the-art (SOTA) methods.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102803"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution enhanced cross-subspace fusion network for light field image superresolution\",\"authors\":\"Shixu Ying ,&nbsp;Shubo Zhou ,&nbsp;Xue-Qin Jiang ,&nbsp;Yongbin Gao ,&nbsp;Feng Pan ,&nbsp;Zhijun Fang\",\"doi\":\"10.1016/j.displa.2024.102803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Light field (LF) images offer abundant spatial and angular information, therefore, the combination of which is beneficial in the performance of LF image superresolution (LF image SR). Currently, existing methods often decompose the 4D LF data into low-dimensional subspaces for individual feature extraction and fusion for LF image SR. However, the performance of these methods is restricted because of lacking effective correlations between subspaces and missing out on crucial complementary information for capturing rich texture details. To address this, we propose a cross-subspace fusion network for LF spatial SR (i.e., CSFNet). Specifically, we design the progressive cross-subspace fusion module (PCSFM), which can progressively establish cross-subspace correlations based on a cross-attention mechanism to comprehensively enrich LF information. Additionally, we propose a high-resolution adaptive enhancement group (HR-AEG), which preserves the texture and edge details in the high resolution feature domain by employing a multibranch enhancement method and an adaptive weight strategy. The experimental results demonstrate that our approach achieves highly competitive performance on multiple LF datasets compared to state-of-the-art (SOTA) methods.</p></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"84 \",\"pages\":\"Article 102803\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224001677\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001677","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

光场(LF)图像提供了丰富的空间和角度信息,因此,将这些信息结合起来有利于实现 LF 图像超分辨率(LF 图像 SR)。目前,现有的方法通常将 4D 光场数据分解成低维子空间,用于单独特征提取和光场图像 SR 的融合。然而,这些方法的性能受到限制,因为子空间之间缺乏有效的相关性,无法捕捉到丰富纹理细节的关键互补信息。为此,我们提出了一种用于低频空间 SR 的跨子空间融合网络(即 CSFNet)。具体来说,我们设计了渐进式跨子空间融合模块(PCSFM),它可以基于交叉关注机制逐步建立跨子空间相关性,从而全面丰富低频信息。此外,我们还提出了高分辨率自适应增强组(HR-AEG),通过采用多分支增强方法和自适应权重策略,保留了高分辨率特征域中的纹理和边缘细节。实验结果表明,与最先进的(SOTA)方法相比,我们的方法在多个低频数据集上取得了极具竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution enhanced cross-subspace fusion network for light field image superresolution

Light field (LF) images offer abundant spatial and angular information, therefore, the combination of which is beneficial in the performance of LF image superresolution (LF image SR). Currently, existing methods often decompose the 4D LF data into low-dimensional subspaces for individual feature extraction and fusion for LF image SR. However, the performance of these methods is restricted because of lacking effective correlations between subspaces and missing out on crucial complementary information for capturing rich texture details. To address this, we propose a cross-subspace fusion network for LF spatial SR (i.e., CSFNet). Specifically, we design the progressive cross-subspace fusion module (PCSFM), which can progressively establish cross-subspace correlations based on a cross-attention mechanism to comprehensively enrich LF information. Additionally, we propose a high-resolution adaptive enhancement group (HR-AEG), which preserves the texture and edge details in the high resolution feature domain by employing a multibranch enhancement method and an adaptive weight strategy. The experimental results demonstrate that our approach achieves highly competitive performance on multiple LF datasets compared to state-of-the-art (SOTA) methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信