{"title":"舒尔茨钻石类别的特化图","authors":"Ian Gleason","doi":"10.1007/s00208-024-02952-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce the specialization map in Scholze’s theory of diamonds. We consider v-sheaves that “behave like formal schemes\" and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an étale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified <i>p</i>-adic Beilinson–Drinfeld Grassmannians are kimberlites with finiteness and normality properties.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specialization maps for Scholze’s category of diamonds\",\"authors\":\"Ian Gleason\",\"doi\":\"10.1007/s00208-024-02952-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the specialization map in Scholze’s theory of diamonds. We consider v-sheaves that “behave like formal schemes\\\" and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an étale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified <i>p</i>-adic Beilinson–Drinfeld Grassmannians are kimberlites with finiteness and normality properties.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02952-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02952-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍舒尔茨钻石理论中的特化映射。我们考虑了 "表现得像形式方案 "的 v 谢弗,并称它们为金伯利特。我们给它们附加了:还原特殊纤维、解析位置、特化映射、扎里斯基位置和埃塔莱位置。当金伯利岩来自形式方案时,我们的位点就恢复了经典位点。我们证明了非ramified p-adic Beilinson-Drinfeld Grassmannians 是具有有限性和规范性的金伯利特。
Specialization maps for Scholze’s category of diamonds
We introduce the specialization map in Scholze’s theory of diamonds. We consider v-sheaves that “behave like formal schemes" and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an étale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified p-adic Beilinson–Drinfeld Grassmannians are kimberlites with finiteness and normality properties.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.