舒尔茨钻石类别的特化图

IF 1.3 2区 数学 Q1 MATHEMATICS
Ian Gleason
{"title":"舒尔茨钻石类别的特化图","authors":"Ian Gleason","doi":"10.1007/s00208-024-02952-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce the specialization map in Scholze’s theory of diamonds. We consider v-sheaves that “behave like formal schemes\" and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an étale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified <i>p</i>-adic Beilinson–Drinfeld Grassmannians are kimberlites with finiteness and normality properties.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specialization maps for Scholze’s category of diamonds\",\"authors\":\"Ian Gleason\",\"doi\":\"10.1007/s00208-024-02952-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the specialization map in Scholze’s theory of diamonds. We consider v-sheaves that “behave like formal schemes\\\" and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an étale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified <i>p</i>-adic Beilinson–Drinfeld Grassmannians are kimberlites with finiteness and normality properties.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02952-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02952-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍舒尔茨钻石理论中的特化映射。我们考虑了 "表现得像形式方案 "的 v 谢弗,并称它们为金伯利特。我们给它们附加了:还原特殊纤维、解析位置、特化映射、扎里斯基位置和埃塔莱位置。当金伯利岩来自形式方案时,我们的位点就恢复了经典位点。我们证明了非ramified p-adic Beilinson-Drinfeld Grassmannians 是具有有限性和规范性的金伯利特。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Specialization maps for Scholze’s category of diamonds

Specialization maps for Scholze’s category of diamonds

We introduce the specialization map in Scholze’s theory of diamonds. We consider v-sheaves that “behave like formal schemes" and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an étale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified p-adic Beilinson–Drinfeld Grassmannians are kimberlites with finiteness and normality properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信