氮转化受 15N 标记的覆盖作物嫩枝和根系分解的影响

IF 2.6 3区 农林科学 Q1 AGRONOMY
Carla Süß, Björn Kemmann, Mirjam Helfrich, Reinhard Well, Heinz Flessa
{"title":"氮转化受 15N 标记的覆盖作物嫩枝和根系分解的影响","authors":"Carla Süß, Björn Kemmann, Mirjam Helfrich, Reinhard Well, Heinz Flessa","doi":"10.1002/jpln.202200437","DOIUrl":null,"url":null,"abstract":"BackgroundIncorporation of cover crop (cc) shoot and root biomass can have different effects on nitrogen (N) dynamics and the transformation of soil‐derived N and cc N.AimsThe objective was to determine the effects of different ccs, cc compartments (roots and shoots), and pretreatment of cc biomass (fresh vs. dried) on mineralization processes and on the transformation of soil and cc N following incorporation into a silty loam soil.MethodsSoil columns with incorporated <jats:sup>15</jats:sup>N‐labeled root and shoot biomass of two cc species (winter rye and oil radish) and different pretreatments (dried and fresh) were incubated for 70 days at a constant temperature and soil moisture (8°C, 40% water‐filled pore space). Carbon and N transformation dynamics were determined repeatedly, distinguishing between N originating from cc biomass and from soil.ResultsNet CO<jats:sub>2</jats:sub> emission was related to the amount of soluble cell components added with ccs. Net N mineralization was negatively related to the C:N ratio of cc biomass. The incorporation of dried cc biomass caused higher initial soil respiration and N immobilization than fresh biomass. All treatments with cc incorporation showed increased N<jats:sub>2</jats:sub>O emission. Emitted N<jats:sub>2</jats:sub>O‐N consisted mainly of cc N (55%–57%) in treatments with fresh shoot biomass, whereas soil N was the main source of N<jats:sub>2</jats:sub>O (75%) in the treatment with fresh oil radish roots. Recovery of cc <jats:sup>15</jats:sup>N was affected by crop compartment and pretreatment. At the end of the incubation, it was 17.5%–42.3% in soil NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>, 0.1%–8.1% in microbial biomass N, and less than 0.23% of cc N was found in cumulative N<jats:sub>2</jats:sub>O emission.ConclusionThe incorporation of cc roots and shoots had different effects on N mobilization and immobilization processes and on the partitioning of cc N. These processes can be influenced significantly by pretreatment of the added plant biomass (dried vs. fresh).","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"311 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen transformation as affected by decomposition of 15N‐labeled cover crop shoots and roots\",\"authors\":\"Carla Süß, Björn Kemmann, Mirjam Helfrich, Reinhard Well, Heinz Flessa\",\"doi\":\"10.1002/jpln.202200437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BackgroundIncorporation of cover crop (cc) shoot and root biomass can have different effects on nitrogen (N) dynamics and the transformation of soil‐derived N and cc N.AimsThe objective was to determine the effects of different ccs, cc compartments (roots and shoots), and pretreatment of cc biomass (fresh vs. dried) on mineralization processes and on the transformation of soil and cc N following incorporation into a silty loam soil.MethodsSoil columns with incorporated <jats:sup>15</jats:sup>N‐labeled root and shoot biomass of two cc species (winter rye and oil radish) and different pretreatments (dried and fresh) were incubated for 70 days at a constant temperature and soil moisture (8°C, 40% water‐filled pore space). Carbon and N transformation dynamics were determined repeatedly, distinguishing between N originating from cc biomass and from soil.ResultsNet CO<jats:sub>2</jats:sub> emission was related to the amount of soluble cell components added with ccs. Net N mineralization was negatively related to the C:N ratio of cc biomass. The incorporation of dried cc biomass caused higher initial soil respiration and N immobilization than fresh biomass. All treatments with cc incorporation showed increased N<jats:sub>2</jats:sub>O emission. Emitted N<jats:sub>2</jats:sub>O‐N consisted mainly of cc N (55%–57%) in treatments with fresh shoot biomass, whereas soil N was the main source of N<jats:sub>2</jats:sub>O (75%) in the treatment with fresh oil radish roots. Recovery of cc <jats:sup>15</jats:sup>N was affected by crop compartment and pretreatment. At the end of the incubation, it was 17.5%–42.3% in soil NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>, 0.1%–8.1% in microbial biomass N, and less than 0.23% of cc N was found in cumulative N<jats:sub>2</jats:sub>O emission.ConclusionThe incorporation of cc roots and shoots had different effects on N mobilization and immobilization processes and on the partitioning of cc N. These processes can be influenced significantly by pretreatment of the added plant biomass (dried vs. fresh).\",\"PeriodicalId\":16802,\"journal\":{\"name\":\"Journal of Plant Nutrition and Soil Science\",\"volume\":\"311 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Nutrition and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/jpln.202200437\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Nutrition and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jpln.202200437","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景掺入覆盖作物(cc)的根和芽生物量对氮(N)的动态变化以及土壤氮和cc氮的转化有不同的影响。方法在恒温、恒湿(8°C,40% 的充满水的孔隙空间)条件下,将添加了 15N 标记的两种cc(冬黑麦和油萝卜)根和芽生物质以及不同预处理方法(干燥和新鲜)的土壤柱培养 70 天。)对碳和氮的转化动态进行了反复测定,并区分了来自cc生物质和土壤的氮。净氮矿化与cc生物质的碳氮比呈负相关。与新鲜生物质相比,干cc生物质在土壤中的初始呼吸作用和氮固定化作用更高。所有掺入cc的处理都增加了一氧化二氮的排放。在施用新鲜嫩枝生物质的处理中,排放的 N2O-N 主要由cc N 组成(55%-57%),而在施用新鲜油萝卜根的处理中,土壤 N 是 N2O 的主要来源(75%)。cc15N的恢复受作物区系和预处理的影响。培养结束时,土壤中 NO3- 的回收率为 17.5%-42.3%,微生物生物量 N 的回收率为 0.1%-8.1%,累积 N2O 排放量中的cc N 不到 0.23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen transformation as affected by decomposition of 15N‐labeled cover crop shoots and roots
BackgroundIncorporation of cover crop (cc) shoot and root biomass can have different effects on nitrogen (N) dynamics and the transformation of soil‐derived N and cc N.AimsThe objective was to determine the effects of different ccs, cc compartments (roots and shoots), and pretreatment of cc biomass (fresh vs. dried) on mineralization processes and on the transformation of soil and cc N following incorporation into a silty loam soil.MethodsSoil columns with incorporated 15N‐labeled root and shoot biomass of two cc species (winter rye and oil radish) and different pretreatments (dried and fresh) were incubated for 70 days at a constant temperature and soil moisture (8°C, 40% water‐filled pore space). Carbon and N transformation dynamics were determined repeatedly, distinguishing between N originating from cc biomass and from soil.ResultsNet CO2 emission was related to the amount of soluble cell components added with ccs. Net N mineralization was negatively related to the C:N ratio of cc biomass. The incorporation of dried cc biomass caused higher initial soil respiration and N immobilization than fresh biomass. All treatments with cc incorporation showed increased N2O emission. Emitted N2O‐N consisted mainly of cc N (55%–57%) in treatments with fresh shoot biomass, whereas soil N was the main source of N2O (75%) in the treatment with fresh oil radish roots. Recovery of cc 15N was affected by crop compartment and pretreatment. At the end of the incubation, it was 17.5%–42.3% in soil NO3, 0.1%–8.1% in microbial biomass N, and less than 0.23% of cc N was found in cumulative N2O emission.ConclusionThe incorporation of cc roots and shoots had different effects on N mobilization and immobilization processes and on the partitioning of cc N. These processes can be influenced significantly by pretreatment of the added plant biomass (dried vs. fresh).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
90
审稿时长
8-16 weeks
期刊介绍: Established in 1922, the Journal of Plant Nutrition and Soil Science (JPNSS) is an international peer-reviewed journal devoted to cover the entire spectrum of plant nutrition and soil science from different scale units, e.g. agroecosystem to natural systems. With its wide scope and focus on soil-plant interactions, JPNSS is one of the leading journals on this topic. Articles in JPNSS include reviews, high-standard original papers, and short communications and represent challenging research of international significance. The Journal of Plant Nutrition and Soil Science is one of the world’s oldest journals. You can trust in a peer-reviewed journal that has been established in the plant and soil science community for almost 100 years. Journal of Plant Nutrition and Soil Science (ISSN 1436-8730) is published in six volumes per year, by the German Societies of Plant Nutrition (DGP) and Soil Science (DBG). Furthermore, the Journal of Plant Nutrition and Soil Science (JPNSS) is a Cooperating Journal of the International Union of Soil Science (IUSS). The journal is produced by Wiley-VCH. Topical Divisions of the Journal of Plant Nutrition and Soil Science that are receiving increasing attention are: JPNSS – Topical Divisions Special timely focus in interdisciplinarity: - sustainability & critical zone science. Soil-Plant Interactions: - rhizosphere science & soil ecology - pollutant cycling & plant-soil protection - land use & climate change. Soil Science: - soil chemistry & soil physics - soil biology & biogeochemistry - soil genesis & mineralogy. Plant Nutrition: - plant nutritional physiology - nutrient dynamics & soil fertility - ecophysiological aspects of plant nutrition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信