隐马尔可夫模型与皮特曼-约尔先验用于概率主题模型

Pub Date : 2024-07-29 DOI:10.1080/03610926.2024.2370920
Jianjie Guo, Lin Guo, Wenchao Xu, Haibin Zhang
{"title":"隐马尔可夫模型与皮特曼-约尔先验用于概率主题模型","authors":"Jianjie Guo, Lin Guo, Wenchao Xu, Haibin Zhang","doi":"10.1080/03610926.2024.2370920","DOIUrl":null,"url":null,"abstract":"Empirical studies of natural language have demonstrated that word frequencies follow power law distributions. However, standard statistical models often fail to capture this property. The Pitman-Yo...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidden Markov model with Pitman-Yor priors for probabilistic topic model\",\"authors\":\"Jianjie Guo, Lin Guo, Wenchao Xu, Haibin Zhang\",\"doi\":\"10.1080/03610926.2024.2370920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical studies of natural language have demonstrated that word frequencies follow power law distributions. However, standard statistical models often fail to capture this property. The Pitman-Yo...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610926.2024.2370920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610926.2024.2370920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对自然语言的实证研究表明,词频遵循幂律分布。然而,标准统计模型往往无法捕捉到这一特性。Pitman-Yo...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hidden Markov model with Pitman-Yor priors for probabilistic topic model
Empirical studies of natural language have demonstrated that word frequencies follow power law distributions. However, standard statistical models often fail to capture this property. The Pitman-Yo...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信