不确定性传播与动态稳健风险度量

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED
Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti
{"title":"不确定性传播与动态稳健风险度量","authors":"Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti","doi":"10.1287/moor.2023.0267","DOIUrl":null,"url":null,"abstract":"We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Propagation and Dynamic Robust Risk Measures\",\"authors\":\"Marlon R. Moresco, Mélina Mailhot, Silvana M. Pesenti\",\"doi\":\"10.1287/moor.2023.0267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0267\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0267","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种量化动态环境中不确定性传播的框架。具体来说,我们定义了动态不确定性集,明确用于有限时间范围内的离散随机过程。这些动态不确定性集捕捉了随机过程和模型的不确定性,并考虑了分布模糊性等因素。不确定性集的例子包括由瓦瑟斯坦距离和 f-divergences 引起的不确定性集。我们进一步将动态稳健风险度量定义为不确定性集内所有候选风险的上集。我们以公理的方式讨论了不确定性集的条件,这些条件导致了动态稳健风险度量的众所周知的特性,如凸性和一致性。此外,我们还讨论了动态不确定性集的必要和充分属性,这些属性会导致动态稳健风险度量的时间一致性。我们发现,源于 f-divergences 的不确定性集会导致强时间一致性,而 Wasserstein 距离则会导致一种新的时间一致性概念,即弱递归性。此外,我们还证明了动态稳健风险度量是强时间一致性或弱递归性的,当且仅当它允许静态不确定性集产生的一步条件稳健风险度量的递归表示时:M. Mailhot 和 S. M. Pesenti 感谢加拿大统计科学研究所 (CANSSI) 和加拿大自然科学与工程研究理事会 [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289] 的支持。M. R. Moresco 感谢地平线博士后奖学金的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Propagation and Dynamic Robust Risk Measures
We introduce a framework for quantifying propagation of uncertainty arising in a dynamic setting. Specifically, we define dynamic uncertainty sets designed explicitly for discrete stochastic processes over a finite time horizon. These dynamic uncertainty sets capture the uncertainty surrounding stochastic processes and models, accounting for factors such as distributional ambiguity. Examples of uncertainty sets include those induced by the Wasserstein distance and f-divergences. We further define dynamic robust risk measures as the supremum of all candidates’ risks within the uncertainty set. In an axiomatic way, we discuss conditions on the uncertainty sets that lead to well-known properties of dynamic robust risk measures, such as convexity and coherence. Furthermore, we discuss the necessary and sufficient properties of dynamic uncertainty sets that lead to time-consistencies of dynamic robust risk measures. We find that uncertainty sets stemming from f-divergences lead to strong time-consistency whereas the Wasserstein distance results in a new time-consistent notion of weak recursiveness. Moreover, we show that a dynamic robust risk measure is strong time-consistent or weak recursive if and only if it admits a recursive representation of one-step conditional robust risk measures arising from static uncertainty sets.Funding: M. Mailhot and S. M. Pesenti acknowledge support from the Canadian Statistical Sciences Institute (CANSSI) and from the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-05447, DGECR-2020-00333, and RGPIN-2020-04289]. M. R. Moresco thanks the Horizon Postdoctoral Fellowship for the support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Operations Research
Mathematics of Operations Research 管理科学-应用数学
CiteScore
3.40
自引率
5.90%
发文量
178
审稿时长
15.0 months
期刊介绍: Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信