{"title":"利用 EarthCARE CPR 和 ATLID 进行云掩膜和云类型分类","authors":"Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, Wooosub Roh","doi":"10.5194/amt-2024-103","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> We develop the Japan Aerospace Exploration Agency (JAXA) level 2 cloud mask and cloud type classification algorithms for the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE), a joint JAXA and European Space Agency (ESA) satellite mission. Cloud profiling radar (CPR)-only, atmospheric lidar (ATLID)-only, and combined CPR–ATLID algorithms for the cloud mask and cloud particle type are described. The algorithms are developed and evaluated using ground-based data, space-borne data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and simulation data from a Japanese global cloud-resolving model, the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with Joint simulator. The algorithms are based on our algorithms for CloudSat and CALIPSO with several improvements. The cloud particle type for ATLID is derived from an attenuation–depolarization diagram trained using 355 nm multiple-field-of-view multiple-scattering polarization lidar and changing the diagram from that developed for CALIPSO. The retrieved cloud particle phases (ice, water, and mixed phases) and those reported in the NICAM output data are compared. We found that the agreement for CPR-only, ATLID-only, and combined CPR–ATLID algorithms averaged roughly 80 %, 85 %, and 80 %, respectively, for 15 different cloud scenes corresponding to two EarthCARE orbits.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"8 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud masks and cloud type classification using EarthCARE CPR and ATLID\",\"authors\":\"Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, Wooosub Roh\",\"doi\":\"10.5194/amt-2024-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> We develop the Japan Aerospace Exploration Agency (JAXA) level 2 cloud mask and cloud type classification algorithms for the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE), a joint JAXA and European Space Agency (ESA) satellite mission. Cloud profiling radar (CPR)-only, atmospheric lidar (ATLID)-only, and combined CPR–ATLID algorithms for the cloud mask and cloud particle type are described. The algorithms are developed and evaluated using ground-based data, space-borne data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and simulation data from a Japanese global cloud-resolving model, the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with Joint simulator. The algorithms are based on our algorithms for CloudSat and CALIPSO with several improvements. The cloud particle type for ATLID is derived from an attenuation–depolarization diagram trained using 355 nm multiple-field-of-view multiple-scattering polarization lidar and changing the diagram from that developed for CALIPSO. The retrieved cloud particle phases (ice, water, and mixed phases) and those reported in the NICAM output data are compared. We found that the agreement for CPR-only, ATLID-only, and combined CPR–ATLID algorithms averaged roughly 80 %, 85 %, and 80 %, respectively, for 15 different cloud scenes corresponding to two EarthCARE orbits.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-2024-103\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-2024-103","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Cloud masks and cloud type classification using EarthCARE CPR and ATLID
Abstract. We develop the Japan Aerospace Exploration Agency (JAXA) level 2 cloud mask and cloud type classification algorithms for the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE), a joint JAXA and European Space Agency (ESA) satellite mission. Cloud profiling radar (CPR)-only, atmospheric lidar (ATLID)-only, and combined CPR–ATLID algorithms for the cloud mask and cloud particle type are described. The algorithms are developed and evaluated using ground-based data, space-borne data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and simulation data from a Japanese global cloud-resolving model, the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with Joint simulator. The algorithms are based on our algorithms for CloudSat and CALIPSO with several improvements. The cloud particle type for ATLID is derived from an attenuation–depolarization diagram trained using 355 nm multiple-field-of-view multiple-scattering polarization lidar and changing the diagram from that developed for CALIPSO. The retrieved cloud particle phases (ice, water, and mixed phases) and those reported in the NICAM output data are compared. We found that the agreement for CPR-only, ATLID-only, and combined CPR–ATLID algorithms averaged roughly 80 %, 85 %, and 80 %, respectively, for 15 different cloud scenes corresponding to two EarthCARE orbits.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.