使用 MLR、ANN 和 RF 模型并结合小波变换预测雅鲁藏布江(潘都站)流量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sachin Dadu Khandekar, Dinesh Shrikrishna Aswar, Varsha Sachin Khandekar, Shivakumar B. Khaple
{"title":"使用 MLR、ANN 和 RF 模型并结合小波变换预测雅鲁藏布江(潘都站)流量","authors":"Sachin Dadu Khandekar, Dinesh Shrikrishna Aswar, Varsha Sachin Khandekar, Shivakumar B. Khaple","doi":"10.1007/s12205-024-2521-2","DOIUrl":null,"url":null,"abstract":"<p>In the current work, a DWT (Discrete Wavelet Transform) was linked to ANN, MLR, and RF to develop hybrid models WANN, WMLR, and WRF, respectively, for Brahmaputra River flow forecasting. We used ten-year daily flow data from Pandu Station, which was decomposed (up to five levels) into multiresolution time series using DWT and Daubechies wavelets db1, db2, db3, db8, and db10. The predicted discharge values for multiple lead times (2, 3, 4, 7, and 14 days) have been then obtained by feeding multiresolution time series data as the input to MLR, ANN, and RF. It was discovered that the WMLR-db10 model outperformed the WANN and WRF models for all lead times. Throughout the testing phase, the values of Nash-Sutcliffe efficiency (<i>NS</i>) along with RMSE (shown in bracket) for the WMLR-db10 model for lead times 2, 3, 4, 7 and 14 days have been observed to be, respectively, 0.998 (415.18 m<sup>3</sup>/s), 0.998 (514.21 m<sup>3</sup>/s), 0.996 (713.62 m<sup>3</sup>/s), 0.991 (1030.83 m<sup>3</sup>/s), and 0.977 (1638.64 m<sup>3</sup>/s). Additionally, it has been observed that WANN performed better for low-order wavelets (db1, db2, db3), WMLR performed better for high-order wavelets (db8, db10), and WRF performed worst of all the wavelets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform\",\"authors\":\"Sachin Dadu Khandekar, Dinesh Shrikrishna Aswar, Varsha Sachin Khandekar, Shivakumar B. Khaple\",\"doi\":\"10.1007/s12205-024-2521-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current work, a DWT (Discrete Wavelet Transform) was linked to ANN, MLR, and RF to develop hybrid models WANN, WMLR, and WRF, respectively, for Brahmaputra River flow forecasting. We used ten-year daily flow data from Pandu Station, which was decomposed (up to five levels) into multiresolution time series using DWT and Daubechies wavelets db1, db2, db3, db8, and db10. The predicted discharge values for multiple lead times (2, 3, 4, 7, and 14 days) have been then obtained by feeding multiresolution time series data as the input to MLR, ANN, and RF. It was discovered that the WMLR-db10 model outperformed the WANN and WRF models for all lead times. Throughout the testing phase, the values of Nash-Sutcliffe efficiency (<i>NS</i>) along with RMSE (shown in bracket) for the WMLR-db10 model for lead times 2, 3, 4, 7 and 14 days have been observed to be, respectively, 0.998 (415.18 m<sup>3</sup>/s), 0.998 (514.21 m<sup>3</sup>/s), 0.996 (713.62 m<sup>3</sup>/s), 0.991 (1030.83 m<sup>3</sup>/s), and 0.977 (1638.64 m<sup>3</sup>/s). Additionally, it has been observed that WANN performed better for low-order wavelets (db1, db2, db3), WMLR performed better for high-order wavelets (db8, db10), and WRF performed worst of all the wavelets.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-2521-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2521-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在当前工作中,DWT(离散小波变换)与 ANN、MLR 和 RF 相结合,分别开发出用于雅鲁藏布江流量预报的混合模型 WANN、WMLR 和 WRF。我们使用了潘杜站十年的日流量数据,并使用 DWT 和 Daubechies 小波 db1、db2、db3、db8 和 db10 将其分解(最多五级)为多分辨率时间序列。然后,通过将多分辨率时间序列数据作为 MLR、ANN 和 RF 的输入,得到多个前导时间(2、3、4、7 和 14 天)的预测排放值。结果发现,WMLR-db10 模型在所有提前期的表现都优于 WANN 和 WRF 模型。在整个测试阶段,观察到 WMLR-db10 模型在前导时间为 2、3、4、7 和 14 天时的纳什-苏特克利夫效率(NS)值和均方根误差(RMSE)值分别为 0.998(415.18 立方米/秒)、0.998(514.21 立方米/秒)、0.996(713.62 立方米/秒)、0.991(1030.83 立方米/秒)和 0.977(1638.64 立方米/秒)。此外,还观察到 WANN 在低阶小波(db1、db2、db3)方面表现较好,WMLR 在高阶小波(db8、db10)方面表现较好,而 WRF 在所有小波中表现最差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform

In the current work, a DWT (Discrete Wavelet Transform) was linked to ANN, MLR, and RF to develop hybrid models WANN, WMLR, and WRF, respectively, for Brahmaputra River flow forecasting. We used ten-year daily flow data from Pandu Station, which was decomposed (up to five levels) into multiresolution time series using DWT and Daubechies wavelets db1, db2, db3, db8, and db10. The predicted discharge values for multiple lead times (2, 3, 4, 7, and 14 days) have been then obtained by feeding multiresolution time series data as the input to MLR, ANN, and RF. It was discovered that the WMLR-db10 model outperformed the WANN and WRF models for all lead times. Throughout the testing phase, the values of Nash-Sutcliffe efficiency (NS) along with RMSE (shown in bracket) for the WMLR-db10 model for lead times 2, 3, 4, 7 and 14 days have been observed to be, respectively, 0.998 (415.18 m3/s), 0.998 (514.21 m3/s), 0.996 (713.62 m3/s), 0.991 (1030.83 m3/s), and 0.977 (1638.64 m3/s). Additionally, it has been observed that WANN performed better for low-order wavelets (db1, db2, db3), WMLR performed better for high-order wavelets (db8, db10), and WRF performed worst of all the wavelets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信