{"title":"基于遗传算法增强型支持向量机学习的钢筋混凝土桥梁可解释承载力预测","authors":"Shuming Zhou, Donghuang Yan, Yu He","doi":"10.1007/s12205-024-1975-6","DOIUrl":null,"url":null,"abstract":"<p>Existing reinforced concrete (RC) bridges are subjected to environmental erosion and vehicle loads. It is becoming an urgent problem to evaluate the safety condition of bridge structures combining inspection data with artificial intelligence methods. This paper proposes a data-driven capacity assessment framework for existing RC bridges. The load capacity limit state (LCLS) and serviceability limit state (SLS) prediction model are established based on the proposed information fusion machine learning model. The genetic algorithm (GA) optimized support vector machine (SVM) learner is established to capture the relationship between the feature variables and the LSLS or SLS. Forty-five samples are obtained by static and dynamic simulation of the ANSYS models. Five-dimensional parameters are adopted as the key input parameters of the model, including the maximum dynamic deflection, crack opening ratio, and crack normal damage ratio at midspan, 1/4 span, and 3/4 span. The Shapley additive explanations method is proposed to conduct parameters sensitivity analysis. The results show that the GA-SVM regression algorithm in LCLS and SLS reduction factor prediction is better than the artificial neural network (ANN) model. The crack opening ratio is the most critical parameter that can considerably affect the outcomes of the LCLS and SLS prediction.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Capacity Prediction of RC Bridges Based on Genetic Algorithm-enhanced Support Vector Machine Learning\",\"authors\":\"Shuming Zhou, Donghuang Yan, Yu He\",\"doi\":\"10.1007/s12205-024-1975-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing reinforced concrete (RC) bridges are subjected to environmental erosion and vehicle loads. It is becoming an urgent problem to evaluate the safety condition of bridge structures combining inspection data with artificial intelligence methods. This paper proposes a data-driven capacity assessment framework for existing RC bridges. The load capacity limit state (LCLS) and serviceability limit state (SLS) prediction model are established based on the proposed information fusion machine learning model. The genetic algorithm (GA) optimized support vector machine (SVM) learner is established to capture the relationship between the feature variables and the LSLS or SLS. Forty-five samples are obtained by static and dynamic simulation of the ANSYS models. Five-dimensional parameters are adopted as the key input parameters of the model, including the maximum dynamic deflection, crack opening ratio, and crack normal damage ratio at midspan, 1/4 span, and 3/4 span. The Shapley additive explanations method is proposed to conduct parameters sensitivity analysis. The results show that the GA-SVM regression algorithm in LCLS and SLS reduction factor prediction is better than the artificial neural network (ANN) model. The crack opening ratio is the most critical parameter that can considerably affect the outcomes of the LCLS and SLS prediction.</p>\",\"PeriodicalId\":17897,\"journal\":{\"name\":\"KSCE Journal of Civil Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSCE Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1975-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1975-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Interpretable Capacity Prediction of RC Bridges Based on Genetic Algorithm-enhanced Support Vector Machine Learning
Existing reinforced concrete (RC) bridges are subjected to environmental erosion and vehicle loads. It is becoming an urgent problem to evaluate the safety condition of bridge structures combining inspection data with artificial intelligence methods. This paper proposes a data-driven capacity assessment framework for existing RC bridges. The load capacity limit state (LCLS) and serviceability limit state (SLS) prediction model are established based on the proposed information fusion machine learning model. The genetic algorithm (GA) optimized support vector machine (SVM) learner is established to capture the relationship between the feature variables and the LSLS or SLS. Forty-five samples are obtained by static and dynamic simulation of the ANSYS models. Five-dimensional parameters are adopted as the key input parameters of the model, including the maximum dynamic deflection, crack opening ratio, and crack normal damage ratio at midspan, 1/4 span, and 3/4 span. The Shapley additive explanations method is proposed to conduct parameters sensitivity analysis. The results show that the GA-SVM regression algorithm in LCLS and SLS reduction factor prediction is better than the artificial neural network (ANN) model. The crack opening ratio is the most critical parameter that can considerably affect the outcomes of the LCLS and SLS prediction.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering