{"title":"比较人工神经网络和基于回归的日溶解氧浓度建模方法:基于长期监测数据的研究","authors":"Sinan Nacar, Betul Mete, Adem Bayram","doi":"10.1007/s12205-024-2613-z","DOIUrl":null,"url":null,"abstract":"<p>In this study, the ability of regression-based methods, namely conventional regression analysis (CRA) and multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs) method was investigated to model the river dissolved oxygen (DO) concentration. Daily average data for discharge and water-quality (WQ) indicators, which include DO concentration, temperature, specific conductance, and pH, were provided for the monitoring stations USGS 14210000 (upstream) and USGS 14211010 (downstream) in the Clackamas River, Oregon, USA. Eight models were established using different combinations of the input parameters and tested to determine the contribution of each parameter used in the modeling to the performance of the models. The results of the models and methods were compared with each other using several performance statistics. Although the performances of the methods were quite close to each other, the highest estimation performance was obtained from the ANNs method in the testing data sets. According to the performance statistics, Model 8, in which all WQ indicators were included as input parameters, was selected as the optimal model to estimate DO concentration of different periods of the same stations. However, when estimating the DO concentration from one station to another, the highest performance statistics were obtained from Model 8 for upstream and Model 1 for downstream station using the CRA method. For the ANNs method, Model 1 having the single input for both stations was the best model.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"78 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Artificial Neural Networks and Regression-based Methods for Modeling Daily Dissolved Oxygen Concentration: A Study Based on Long-term Monitored Data\",\"authors\":\"Sinan Nacar, Betul Mete, Adem Bayram\",\"doi\":\"10.1007/s12205-024-2613-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the ability of regression-based methods, namely conventional regression analysis (CRA) and multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs) method was investigated to model the river dissolved oxygen (DO) concentration. Daily average data for discharge and water-quality (WQ) indicators, which include DO concentration, temperature, specific conductance, and pH, were provided for the monitoring stations USGS 14210000 (upstream) and USGS 14211010 (downstream) in the Clackamas River, Oregon, USA. Eight models were established using different combinations of the input parameters and tested to determine the contribution of each parameter used in the modeling to the performance of the models. The results of the models and methods were compared with each other using several performance statistics. Although the performances of the methods were quite close to each other, the highest estimation performance was obtained from the ANNs method in the testing data sets. According to the performance statistics, Model 8, in which all WQ indicators were included as input parameters, was selected as the optimal model to estimate DO concentration of different periods of the same stations. However, when estimating the DO concentration from one station to another, the highest performance statistics were obtained from Model 8 for upstream and Model 1 for downstream station using the CRA method. For the ANNs method, Model 1 having the single input for both stations was the best model.</p>\",\"PeriodicalId\":17897,\"journal\":{\"name\":\"KSCE Journal of Civil Engineering\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSCE Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-2613-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2613-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Comparing Artificial Neural Networks and Regression-based Methods for Modeling Daily Dissolved Oxygen Concentration: A Study Based on Long-term Monitored Data
In this study, the ability of regression-based methods, namely conventional regression analysis (CRA) and multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs) method was investigated to model the river dissolved oxygen (DO) concentration. Daily average data for discharge and water-quality (WQ) indicators, which include DO concentration, temperature, specific conductance, and pH, were provided for the monitoring stations USGS 14210000 (upstream) and USGS 14211010 (downstream) in the Clackamas River, Oregon, USA. Eight models were established using different combinations of the input parameters and tested to determine the contribution of each parameter used in the modeling to the performance of the models. The results of the models and methods were compared with each other using several performance statistics. Although the performances of the methods were quite close to each other, the highest estimation performance was obtained from the ANNs method in the testing data sets. According to the performance statistics, Model 8, in which all WQ indicators were included as input parameters, was selected as the optimal model to estimate DO concentration of different periods of the same stations. However, when estimating the DO concentration from one station to another, the highest performance statistics were obtained from Model 8 for upstream and Model 1 for downstream station using the CRA method. For the ANNs method, Model 1 having the single input for both stations was the best model.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering