生成特征驱动图像回放,实现持续学习

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"生成特征驱动图像回放,实现持续学习","authors":"","doi":"10.1016/j.imavis.2024.105187","DOIUrl":null,"url":null,"abstract":"<div><p>Neural networks are prone to catastrophic forgetting when trained incrementally on different tasks. Popular incremental learning methods mitigate such forgetting by retaining a subset of previously seen samples and replaying them during the training on subsequent tasks. However, this is not always possible, e.g., due to data protection regulations. In such restricted scenarios, one can employ generative models to replay either artificial images or hidden features to a classifier. In this work, we propose Genifer (<strong>GEN</strong>erat<strong>I</strong>ve <strong>FE</strong>ature-driven image <strong>R</strong>eplay), where a generative model is trained to replay images that must induce the same hidden features as real samples when they are passed through the classifier. Our technique therefore incorporates the benefits of both image and feature replay, i.e.: (1) unlike conventional image replay, our generative model explicitly learns the distribution of features that are relevant for classification; (2) in contrast to feature replay, our entire classifier remains trainable; and (3) we can leverage image-space augmentations, which increase distillation performance while also mitigating overfitting during the training of the generative model. We show that Genifer substantially outperforms the previous state of the art for various settings on the CIFAR-100 and CUB-200 datasets. The code is available at: <span><span><span>https://github.com/kevthan/feature-driven-image-replay</span></span><svg><path></path></svg></span>.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative feature-driven image replay for continual learning\",\"authors\":\"\",\"doi\":\"10.1016/j.imavis.2024.105187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neural networks are prone to catastrophic forgetting when trained incrementally on different tasks. Popular incremental learning methods mitigate such forgetting by retaining a subset of previously seen samples and replaying them during the training on subsequent tasks. However, this is not always possible, e.g., due to data protection regulations. In such restricted scenarios, one can employ generative models to replay either artificial images or hidden features to a classifier. In this work, we propose Genifer (<strong>GEN</strong>erat<strong>I</strong>ve <strong>FE</strong>ature-driven image <strong>R</strong>eplay), where a generative model is trained to replay images that must induce the same hidden features as real samples when they are passed through the classifier. Our technique therefore incorporates the benefits of both image and feature replay, i.e.: (1) unlike conventional image replay, our generative model explicitly learns the distribution of features that are relevant for classification; (2) in contrast to feature replay, our entire classifier remains trainable; and (3) we can leverage image-space augmentations, which increase distillation performance while also mitigating overfitting during the training of the generative model. We show that Genifer substantially outperforms the previous state of the art for various settings on the CIFAR-100 and CUB-200 datasets. The code is available at: <span><span><span>https://github.com/kevthan/feature-driven-image-replay</span></span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624002920\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624002920","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经网络在对不同任务进行增量训练时,容易出现灾难性遗忘。流行的增量学习方法可以通过保留以前看过的样本子集,并在后续任务的训练过程中重放这些样本来缓解这种遗忘。然而,由于数据保护规定等原因,这种方法并不总是可行。在这种受限的情况下,我们可以采用生成模型,向分类器重放人工图像或隐藏特征。在这项工作中,我们提出了 Genifer(eratve ature-driven image eplay),即训练一个生成模型来重放图像,这些图像在通过分类器时必须诱发与真实样本相同的隐藏特征。因此,我们的技术融合了图像重放和特征重放的优点,即:(1) 与传统的图像重放不同,我们的生成模型可以明确地学习与分类相关的特征分布;(2) 与特征重放不同,我们的整个分类器仍然是可训练的;(3) 我们可以利用图像空间增强技术,在提高蒸馏性能的同时,还能减轻生成模型训练过程中的过拟合。我们的研究表明,在 CIFAR-100 和 CUB-200 数据集的各种设置下,Genifer 的性能大大优于之前的技术水平。代码见.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative feature-driven image replay for continual learning

Neural networks are prone to catastrophic forgetting when trained incrementally on different tasks. Popular incremental learning methods mitigate such forgetting by retaining a subset of previously seen samples and replaying them during the training on subsequent tasks. However, this is not always possible, e.g., due to data protection regulations. In such restricted scenarios, one can employ generative models to replay either artificial images or hidden features to a classifier. In this work, we propose Genifer (GENeratIve FEature-driven image Replay), where a generative model is trained to replay images that must induce the same hidden features as real samples when they are passed through the classifier. Our technique therefore incorporates the benefits of both image and feature replay, i.e.: (1) unlike conventional image replay, our generative model explicitly learns the distribution of features that are relevant for classification; (2) in contrast to feature replay, our entire classifier remains trainable; and (3) we can leverage image-space augmentations, which increase distillation performance while also mitigating overfitting during the training of the generative model. We show that Genifer substantially outperforms the previous state of the art for various settings on the CIFAR-100 and CUB-200 datasets. The code is available at: https://github.com/kevthan/feature-driven-image-replay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信