{"title":"漂浮的元气泡:空中网关和空中路由","authors":"Mostafa Salah","doi":"10.1186/s13638-024-02372-6","DOIUrl":null,"url":null,"abstract":"<p>Reflecting intelligent surface technology (RIS) is regarded as a key enabler of the sixth-generation (6G) communication system. It provides the ability to reshape radio channels through passively reflecting beams in a reconstructive manner. Furthermore, aerial RIS (ARIS) introduces more flexibility in providing line-of-sight (LOS) links. Unfortunately, most of the related research efforts supposed the system as a planar RIS mounted on a satellite, unmanned aerial vehicle (UAV), or balloon despite reported limitations of planar RISs. The essential problem in designing any planar RIS network resides in mutual orientation and alignment difficulty, especially under random fluctuation of position/orientation due to wind conditions or UAV wobbling in the hover state. So, this paper highlights spherical RIS (bubble) as the optimal choice for aerial beam routing where the orientation/rotation can be completely relaxed. It outperforms planar RIS in terms of RIS networking flexibility, dead zone relaxation, and coverage extension. Consequently, due to the added degrees of freedom, many new deployment scenarios/use cases are recommended such as introducing meta-bubbles as intermediate gateways between satellite and ground nodes and extending network infrastructure installation down to the client level to enhance its visibility and throughput. Simulations demonstrate the superiority of meta-bubbles in minimizing channel loss over successive multi-hop routing.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"51 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floating meta-bubbles: aerial gateway and routing on the sky\",\"authors\":\"Mostafa Salah\",\"doi\":\"10.1186/s13638-024-02372-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reflecting intelligent surface technology (RIS) is regarded as a key enabler of the sixth-generation (6G) communication system. It provides the ability to reshape radio channels through passively reflecting beams in a reconstructive manner. Furthermore, aerial RIS (ARIS) introduces more flexibility in providing line-of-sight (LOS) links. Unfortunately, most of the related research efforts supposed the system as a planar RIS mounted on a satellite, unmanned aerial vehicle (UAV), or balloon despite reported limitations of planar RISs. The essential problem in designing any planar RIS network resides in mutual orientation and alignment difficulty, especially under random fluctuation of position/orientation due to wind conditions or UAV wobbling in the hover state. So, this paper highlights spherical RIS (bubble) as the optimal choice for aerial beam routing where the orientation/rotation can be completely relaxed. It outperforms planar RIS in terms of RIS networking flexibility, dead zone relaxation, and coverage extension. Consequently, due to the added degrees of freedom, many new deployment scenarios/use cases are recommended such as introducing meta-bubbles as intermediate gateways between satellite and ground nodes and extending network infrastructure installation down to the client level to enhance its visibility and throughput. Simulations demonstrate the superiority of meta-bubbles in minimizing channel loss over successive multi-hop routing.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-024-02372-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02372-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Floating meta-bubbles: aerial gateway and routing on the sky
Reflecting intelligent surface technology (RIS) is regarded as a key enabler of the sixth-generation (6G) communication system. It provides the ability to reshape radio channels through passively reflecting beams in a reconstructive manner. Furthermore, aerial RIS (ARIS) introduces more flexibility in providing line-of-sight (LOS) links. Unfortunately, most of the related research efforts supposed the system as a planar RIS mounted on a satellite, unmanned aerial vehicle (UAV), or balloon despite reported limitations of planar RISs. The essential problem in designing any planar RIS network resides in mutual orientation and alignment difficulty, especially under random fluctuation of position/orientation due to wind conditions or UAV wobbling in the hover state. So, this paper highlights spherical RIS (bubble) as the optimal choice for aerial beam routing where the orientation/rotation can be completely relaxed. It outperforms planar RIS in terms of RIS networking flexibility, dead zone relaxation, and coverage extension. Consequently, due to the added degrees of freedom, many new deployment scenarios/use cases are recommended such as introducing meta-bubbles as intermediate gateways between satellite and ground nodes and extending network infrastructure installation down to the client level to enhance its visibility and throughput. Simulations demonstrate the superiority of meta-bubbles in minimizing channel loss over successive multi-hop routing.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.