Guojun WuNanjing University of Information Science and Technology, Luoshan XuYangzhou University, Wei YaoNanjing University of Information Science and Technology
{"title":"CF 近似空间何时捕获 sL 域","authors":"Guojun WuNanjing University of Information Science and Technology, Luoshan XuYangzhou University, Wei YaoNanjing University of Information Science and Technology","doi":"arxiv-2408.03529","DOIUrl":null,"url":null,"abstract":"In this paper, by means of upper approximation operators in rough set theory,\nwe study representations for sL-domains and its special subclasses. We\nintroduce the concepts of sL-approximation spaces, L-approximation spaces and\nbc-approximation spaces, which are special types of CF-approximation spaces. We\nprove that the collection of CF-closed sets in an sL-approximation space\n(resp., an L-approximation space, a bc-approximation space) ordered by\nset-theoretic inclusion is an sL-domain (resp., an L-domain, a bc-domain);\nconversely, every sL-domain (resp., L-domain, bc-domain) is order-isomorphic to\nthe collection of CF-closed sets of an sL-approximation space (resp., an\nL-approximation space, a bc-approximation space). Consequently, we establish an\nequivalence between the category of sL-domains (resp., L-domains) with Scott\ncontinuous mappings and that of sL-approximation spaces (resp., L-approximation\nspaces) with CF-approximable relations.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When do CF-approximation spaces capture sL-domains\",\"authors\":\"Guojun WuNanjing University of Information Science and Technology, Luoshan XuYangzhou University, Wei YaoNanjing University of Information Science and Technology\",\"doi\":\"arxiv-2408.03529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by means of upper approximation operators in rough set theory,\\nwe study representations for sL-domains and its special subclasses. We\\nintroduce the concepts of sL-approximation spaces, L-approximation spaces and\\nbc-approximation spaces, which are special types of CF-approximation spaces. We\\nprove that the collection of CF-closed sets in an sL-approximation space\\n(resp., an L-approximation space, a bc-approximation space) ordered by\\nset-theoretic inclusion is an sL-domain (resp., an L-domain, a bc-domain);\\nconversely, every sL-domain (resp., L-domain, bc-domain) is order-isomorphic to\\nthe collection of CF-closed sets of an sL-approximation space (resp., an\\nL-approximation space, a bc-approximation space). Consequently, we establish an\\nequivalence between the category of sL-domains (resp., L-domains) with Scott\\ncontinuous mappings and that of sL-approximation spaces (resp., L-approximation\\nspaces) with CF-approximable relations.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When do CF-approximation spaces capture sL-domains
In this paper, by means of upper approximation operators in rough set theory,
we study representations for sL-domains and its special subclasses. We
introduce the concepts of sL-approximation spaces, L-approximation spaces and
bc-approximation spaces, which are special types of CF-approximation spaces. We
prove that the collection of CF-closed sets in an sL-approximation space
(resp., an L-approximation space, a bc-approximation space) ordered by
set-theoretic inclusion is an sL-domain (resp., an L-domain, a bc-domain);
conversely, every sL-domain (resp., L-domain, bc-domain) is order-isomorphic to
the collection of CF-closed sets of an sL-approximation space (resp., an
L-approximation space, a bc-approximation space). Consequently, we establish an
equivalence between the category of sL-domains (resp., L-domains) with Scott
continuous mappings and that of sL-approximation spaces (resp., L-approximation
spaces) with CF-approximable relations.