在新的广义远期市场模型(FMM)下为利率衍生品定价的 PDEs

J. G. López-Salas, S. Pérez-Rodríguez, C. Vázquez
{"title":"在新的广义远期市场模型(FMM)下为利率衍生品定价的 PDEs","authors":"J. G. López-Salas, S. Pérez-Rodríguez, C. Vázquez","doi":"arxiv-2408.02289","DOIUrl":null,"url":null,"abstract":"In this article we derive partial differential equations (PDEs) for pricing\ninterest rate derivatives under the generalized Forward Market Model (FMM)\nrecently presented by A. Lyashenko and F. Mercurio in\n\\cite{lyashenkoMercurio:Mar2019} to model the dynamics of the Risk Free Rates\n(RFRs) that are replacing the traditional IBOR rates in the financial industry.\nMoreover, for the numerical solution of the proposed PDEs formulation, we\ndevelop some adaptations of the finite differences methods developed in\n\\cite{LopezPerezVazquez:sisc} that are very suitable to treat the presence of\nspatial mixed derivatives. This work is the first article in the literature\nwhere PDE methods are used to value RFR derivatives. Additionally, Monte\nCarlo-based methods will be designed and the results are compared with those\nobtained by the numerical solution of PDEs.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDEs for pricing interest rate derivatives under the new generalized Forward Market Model (FMM)\",\"authors\":\"J. G. López-Salas, S. Pérez-Rodríguez, C. Vázquez\",\"doi\":\"arxiv-2408.02289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we derive partial differential equations (PDEs) for pricing\\ninterest rate derivatives under the generalized Forward Market Model (FMM)\\nrecently presented by A. Lyashenko and F. Mercurio in\\n\\\\cite{lyashenkoMercurio:Mar2019} to model the dynamics of the Risk Free Rates\\n(RFRs) that are replacing the traditional IBOR rates in the financial industry.\\nMoreover, for the numerical solution of the proposed PDEs formulation, we\\ndevelop some adaptations of the finite differences methods developed in\\n\\\\cite{LopezPerezVazquez:sisc} that are very suitable to treat the presence of\\nspatial mixed derivatives. This work is the first article in the literature\\nwhere PDE methods are used to value RFR derivatives. Additionally, Monte\\nCarlo-based methods will be designed and the results are compared with those\\nobtained by the numerical solution of PDEs.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们推导了在广义远期市场模型(FMM)下为利率衍生品定价的偏微分方程(PDEs),该模型最近由A. Lyashenko和F. Mercurio在(cite{lyashenkoMercurio:Mar2019}中提出,用于模拟金融业中正在取代传统IBOR利率的无风险利率(RFRs)的动态。此外,为了对所提出的 PDEs 公式进行数值求解,我们对《LopezPerezVazquez:sisc》中开发的有限差分方法进行了一些改编,这些方法非常适合处理空间混合导数的存在。这项工作是文献中第一篇使用 PDE 方法对 RFR 导数进行估值的文章。此外,还将设计基于 MonteCarlo 的方法,并将结果与 PDE 数值解法得出的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDEs for pricing interest rate derivatives under the new generalized Forward Market Model (FMM)
In this article we derive partial differential equations (PDEs) for pricing interest rate derivatives under the generalized Forward Market Model (FMM) recently presented by A. Lyashenko and F. Mercurio in \cite{lyashenkoMercurio:Mar2019} to model the dynamics of the Risk Free Rates (RFRs) that are replacing the traditional IBOR rates in the financial industry. Moreover, for the numerical solution of the proposed PDEs formulation, we develop some adaptations of the finite differences methods developed in \cite{LopezPerezVazquez:sisc} that are very suitable to treat the presence of spatial mixed derivatives. This work is the first article in the literature where PDE methods are used to value RFR derivatives. Additionally, Monte Carlo-based methods will be designed and the results are compared with those obtained by the numerical solution of PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信