曲面上的路径几何链:理论与实例

IF 0.8 2区 数学 Q2 MATHEMATICS
Gil Bor, Travis Willse
{"title":"曲面上的路径几何链:理论与实例","authors":"Gil Bor, Travis Willse","doi":"10.1007/s11856-024-2633-x","DOIUrl":null,"url":null,"abstract":"<p>We derive the equations of chains for path geometries on surfaces by solving the equivalence problem of a related structure: sub-Riemannian geometry of signature (1, 1) on a contact 3-manifold. This approach is significantly simpler than the standard method of solving the full equivalence problem for path geometry. We then use these equations to give a characterization of projective path geometries in terms of their chains (the chains projected to the surface coincide with the paths) and study the chains of four examples of homogeneous path geometries. In one of these examples (horocycles in the hyperbolic planes) the projected chains are bicircular quartics.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chains of path geometries on surfaces: theory and examples\",\"authors\":\"Gil Bor, Travis Willse\",\"doi\":\"10.1007/s11856-024-2633-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We derive the equations of chains for path geometries on surfaces by solving the equivalence problem of a related structure: sub-Riemannian geometry of signature (1, 1) on a contact 3-manifold. This approach is significantly simpler than the standard method of solving the full equivalence problem for path geometry. We then use these equations to give a characterization of projective path geometries in terms of their chains (the chains projected to the surface coincide with the paths) and study the chains of four examples of homogeneous path geometries. In one of these examples (horocycles in the hyperbolic planes) the projected chains are bicircular quartics.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2633-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2633-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过求解相关结构的等价问题,推导出曲面上路径几何的链方程:接触三芒星上签名为 (1, 1) 的子黎曼几何。这种方法比求解路径几何完全等价问题的标准方法简单得多。然后,我们利用这些方程给出了投影路径几何的链的特征(投影到表面的链与路径重合),并研究了四个同质路径几何实例的链。在其中一个例子(双曲面中的角循环)中,投影链是双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chains of path geometries on surfaces: theory and examples

We derive the equations of chains for path geometries on surfaces by solving the equivalence problem of a related structure: sub-Riemannian geometry of signature (1, 1) on a contact 3-manifold. This approach is significantly simpler than the standard method of solving the full equivalence problem for path geometry. We then use these equations to give a characterization of projective path geometries in terms of their chains (the chains projected to the surface coincide with the paths) and study the chains of four examples of homogeneous path geometries. In one of these examples (horocycles in the hyperbolic planes) the projected chains are bicircular quartics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信