{"title":"曲面上的路径几何链:理论与实例","authors":"Gil Bor, Travis Willse","doi":"10.1007/s11856-024-2633-x","DOIUrl":null,"url":null,"abstract":"<p>We derive the equations of chains for path geometries on surfaces by solving the equivalence problem of a related structure: sub-Riemannian geometry of signature (1, 1) on a contact 3-manifold. This approach is significantly simpler than the standard method of solving the full equivalence problem for path geometry. We then use these equations to give a characterization of projective path geometries in terms of their chains (the chains projected to the surface coincide with the paths) and study the chains of four examples of homogeneous path geometries. In one of these examples (horocycles in the hyperbolic planes) the projected chains are bicircular quartics.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chains of path geometries on surfaces: theory and examples\",\"authors\":\"Gil Bor, Travis Willse\",\"doi\":\"10.1007/s11856-024-2633-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We derive the equations of chains for path geometries on surfaces by solving the equivalence problem of a related structure: sub-Riemannian geometry of signature (1, 1) on a contact 3-manifold. This approach is significantly simpler than the standard method of solving the full equivalence problem for path geometry. We then use these equations to give a characterization of projective path geometries in terms of their chains (the chains projected to the surface coincide with the paths) and study the chains of four examples of homogeneous path geometries. In one of these examples (horocycles in the hyperbolic planes) the projected chains are bicircular quartics.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2633-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2633-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Chains of path geometries on surfaces: theory and examples
We derive the equations of chains for path geometries on surfaces by solving the equivalence problem of a related structure: sub-Riemannian geometry of signature (1, 1) on a contact 3-manifold. This approach is significantly simpler than the standard method of solving the full equivalence problem for path geometry. We then use these equations to give a characterization of projective path geometries in terms of their chains (the chains projected to the surface coincide with the paths) and study the chains of four examples of homogeneous path geometries. In one of these examples (horocycles in the hyperbolic planes) the projected chains are bicircular quartics.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.