薛定谔特征函数衰变和阿格蒙气泡的有效边界

IF 0.8 2区 数学 Q2 MATHEMATICS
Stefan Steinerberger
{"title":"薛定谔特征函数衰变和阿格蒙气泡的有效边界","authors":"Stefan Steinerberger","doi":"10.1007/s11856-024-2641-x","DOIUrl":null,"url":null,"abstract":"<p>We study solutions of −Δ<i>u</i> + <i>Vu</i> = λ<i>u</i> on ℝ<sup><i>n</i></sup>. Such solutions localize in the ‘allowed’ region {<i>x</i> ∈ ℝ<sup><i>n</i></sup>: <i>V</i>(<i>x</i>) ≤ λ} and decay exponentially in the ‘forbidden’ region {<i>x</i> ∈ ℝ<sup><i>n</i></sup>: <i>V</i>(<i>x</i>) &gt; λ}. One way of making this precise is Agmon’s inequality implying decay estimates in terms of the Agmon metric. We prove a complementary decay estimate in terms of harmonic measure which can improve on Agmon’s estimate, connect the Agmon metric to decay of harmonic measure and prove a sharp pointwise Agmon estimate.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective bounds for the decay of Schrödinger eigenfunctions and Agmon bubbles\",\"authors\":\"Stefan Steinerberger\",\"doi\":\"10.1007/s11856-024-2641-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study solutions of −Δ<i>u</i> + <i>Vu</i> = λ<i>u</i> on ℝ<sup><i>n</i></sup>. Such solutions localize in the ‘allowed’ region {<i>x</i> ∈ ℝ<sup><i>n</i></sup>: <i>V</i>(<i>x</i>) ≤ λ} and decay exponentially in the ‘forbidden’ region {<i>x</i> ∈ ℝ<sup><i>n</i></sup>: <i>V</i>(<i>x</i>) &gt; λ}. One way of making this precise is Agmon’s inequality implying decay estimates in terms of the Agmon metric. We prove a complementary decay estimate in terms of harmonic measure which can improve on Agmon’s estimate, connect the Agmon metric to decay of harmonic measure and prove a sharp pointwise Agmon estimate.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2641-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2641-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究-Δu + Vu = λu 在ℝn上的解。这些解在 "允许 "区域{x ∈ ℝn:V(x) ≤λ} ,并在 "禁止 "区域 {x∈ ℝn 内呈指数衰减:V(x) > λ} 。阿格蒙不等式是实现这一精确性的方法之一,它意味着以阿格蒙度量为基础的衰变估计。我们将阿格蒙度量与谐波度量的衰减联系起来,并证明了一个尖锐的阿格蒙点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective bounds for the decay of Schrödinger eigenfunctions and Agmon bubbles

We study solutions of −Δu + Vu = λu on ℝn. Such solutions localize in the ‘allowed’ region {x ∈ ℝn: V(x) ≤ λ} and decay exponentially in the ‘forbidden’ region {x ∈ ℝn: V(x) > λ}. One way of making this precise is Agmon’s inequality implying decay estimates in terms of the Agmon metric. We prove a complementary decay estimate in terms of harmonic measure which can improve on Agmon’s estimate, connect the Agmon metric to decay of harmonic measure and prove a sharp pointwise Agmon estimate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信