Fingularities 的稳定性和变形

IF 0.8 2区 数学 Q2 MATHEMATICS
Alessandro De Stefani, Ilya Smirnov
{"title":"Fingularities 的稳定性和变形","authors":"Alessandro De Stefani, Ilya Smirnov","doi":"10.1007/s11856-024-2638-5","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of m-adic stability of <i>F</i>-singularities, that is, whether the property that a quotient of a local ring (<span>\\(R,\\mathfrak{m}\\)</span>) by a non-zero divisor <span>\\(x\\in\\mathfrak{m}\\)</span> has good <i>F</i>-singularities is preserved in a sufficiently small <span>\\(\\mathfrak{m}\\)</span>-adic neighborhood of <i>x</i>. We show that <span>\\(\\mathfrak{m}\\)</span>-adic stability holds for <i>F</i>-rationality in full generality, and for <i>F</i>-injectivity, <i>F</i>-purity and strong <i>F</i>-regularity under certain assumptions. We show that strong <i>F</i>-regularity and <i>F</i>-purity are not stable in general. Moreover, we exhibit strong connections between stability and deformation phenomena, which hold in great generality.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and deformation of F-singularities\",\"authors\":\"Alessandro De Stefani, Ilya Smirnov\",\"doi\":\"10.1007/s11856-024-2638-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of m-adic stability of <i>F</i>-singularities, that is, whether the property that a quotient of a local ring (<span>\\\\(R,\\\\mathfrak{m}\\\\)</span>) by a non-zero divisor <span>\\\\(x\\\\in\\\\mathfrak{m}\\\\)</span> has good <i>F</i>-singularities is preserved in a sufficiently small <span>\\\\(\\\\mathfrak{m}\\\\)</span>-adic neighborhood of <i>x</i>. We show that <span>\\\\(\\\\mathfrak{m}\\\\)</span>-adic stability holds for <i>F</i>-rationality in full generality, and for <i>F</i>-injectivity, <i>F</i>-purity and strong <i>F</i>-regularity under certain assumptions. We show that strong <i>F</i>-regularity and <i>F</i>-purity are not stable in general. Moreover, we exhibit strong connections between stability and deformation phenomena, which hold in great generality.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2638-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2638-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 F-singularities 的 m-adic 稳定性问题,即在 x 的一个足够小的\(\mathfrak{m}\)-adic 邻域中,局部环(\(R,\mathfrak{m}\))的非零除数\(x\in\mathfrak{m}\)的商是否具有良好的 F-singularities 的性质。我们证明了 \(\mathfrak{m}\)-adic 稳定性在一般情况下对于 F-合理性是成立的,并且在某些假设条件下对于 F-注入性、F-纯粹性和强 F-规则性也是成立的。我们证明了强 F-regularity 和 F-purity 在一般情况下并不稳定。此外,我们还展示了稳定性与变形现象之间的紧密联系,这在很大程度上是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and deformation of F-singularities

We study the problem of m-adic stability of F-singularities, that is, whether the property that a quotient of a local ring (\(R,\mathfrak{m}\)) by a non-zero divisor \(x\in\mathfrak{m}\) has good F-singularities is preserved in a sufficiently small \(\mathfrak{m}\)-adic neighborhood of x. We show that \(\mathfrak{m}\)-adic stability holds for F-rationality in full generality, and for F-injectivity, F-purity and strong F-regularity under certain assumptions. We show that strong F-regularity and F-purity are not stable in general. Moreover, we exhibit strong connections between stability and deformation phenomena, which hold in great generality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信