有节制分数算子的最大原则和直接方法

IF 0.8 2区 数学 Q2 MATHEMATICS
Yuxia Guo, Shaolong Peng
{"title":"有节制分数算子的最大原则和直接方法","authors":"Yuxia Guo, Shaolong Peng","doi":"10.1007/s11856-024-2639-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the tempered fractional operator <span>\\(-(\\Delta+\\lambda)^{\\alpha\\over{2}}\\)</span> with <i>α</i> ∈ (0, 2) and λ is a sufficiently small positive constant. We first establish various maximum principle principles and develop the direct moving planes and sliding methods for anti-symmetric functions involving tempered fractional operators. And then we consider tempered fractional problems. As applications, we extend the direct method of moving planes and sliding methods for the tempered fractional problem, and discuss how they can be used to establish symmetry, monotonicity, Liouville-type results and uniqueness results for solutions in various domains. We believe that our theory and methods can be conveniently applied to study other problems involving tempered fractional operators.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum principles and direct methods for tempered fractional operators\",\"authors\":\"Yuxia Guo, Shaolong Peng\",\"doi\":\"10.1007/s11856-024-2639-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with the tempered fractional operator <span>\\\\(-(\\\\Delta+\\\\lambda)^{\\\\alpha\\\\over{2}}\\\\)</span> with <i>α</i> ∈ (0, 2) and λ is a sufficiently small positive constant. We first establish various maximum principle principles and develop the direct moving planes and sliding methods for anti-symmetric functions involving tempered fractional operators. And then we consider tempered fractional problems. As applications, we extend the direct method of moving planes and sliding methods for the tempered fractional problem, and discuss how they can be used to establish symmetry, monotonicity, Liouville-type results and uniqueness results for solutions in various domains. We believe that our theory and methods can be conveniently applied to study other problems involving tempered fractional operators.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2639-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2639-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注的是α∈(0,2)且λ为足够小的正常数的调和分算子 \(-(\Delta+\lambda)^{\alpha\over{2}}(-(\Delta+\lambda)^{\alpha\over{2}})。我们首先建立了各种最大原则原理,并发展了涉及有节制分算子的反对称函数的直接移动平面和滑动方法。然后,我们考虑有节制分式问题。作为应用,我们扩展了回火分式问题的直接移动平面方法和滑动方法,并讨论了如何利用它们建立各种域中解的对称性、单调性、Liouville 型结果和唯一性结果。我们相信,我们的理论和方法可以方便地应用于研究其他涉及节制分数算子的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum principles and direct methods for tempered fractional operators

In this paper, we are concerned with the tempered fractional operator \(-(\Delta+\lambda)^{\alpha\over{2}}\) with α ∈ (0, 2) and λ is a sufficiently small positive constant. We first establish various maximum principle principles and develop the direct moving planes and sliding methods for anti-symmetric functions involving tempered fractional operators. And then we consider tempered fractional problems. As applications, we extend the direct method of moving planes and sliding methods for the tempered fractional problem, and discuss how they can be used to establish symmetry, monotonicity, Liouville-type results and uniqueness results for solutions in various domains. We believe that our theory and methods can be conveniently applied to study other problems involving tempered fractional operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信