{"title":"有节制分数算子的最大原则和直接方法","authors":"Yuxia Guo, Shaolong Peng","doi":"10.1007/s11856-024-2639-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the tempered fractional operator <span>\\(-(\\Delta+\\lambda)^{\\alpha\\over{2}}\\)</span> with <i>α</i> ∈ (0, 2) and λ is a sufficiently small positive constant. We first establish various maximum principle principles and develop the direct moving planes and sliding methods for anti-symmetric functions involving tempered fractional operators. And then we consider tempered fractional problems. As applications, we extend the direct method of moving planes and sliding methods for the tempered fractional problem, and discuss how they can be used to establish symmetry, monotonicity, Liouville-type results and uniqueness results for solutions in various domains. We believe that our theory and methods can be conveniently applied to study other problems involving tempered fractional operators.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum principles and direct methods for tempered fractional operators\",\"authors\":\"Yuxia Guo, Shaolong Peng\",\"doi\":\"10.1007/s11856-024-2639-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with the tempered fractional operator <span>\\\\(-(\\\\Delta+\\\\lambda)^{\\\\alpha\\\\over{2}}\\\\)</span> with <i>α</i> ∈ (0, 2) and λ is a sufficiently small positive constant. We first establish various maximum principle principles and develop the direct moving planes and sliding methods for anti-symmetric functions involving tempered fractional operators. And then we consider tempered fractional problems. As applications, we extend the direct method of moving planes and sliding methods for the tempered fractional problem, and discuss how they can be used to establish symmetry, monotonicity, Liouville-type results and uniqueness results for solutions in various domains. We believe that our theory and methods can be conveniently applied to study other problems involving tempered fractional operators.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2639-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2639-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Maximum principles and direct methods for tempered fractional operators
In this paper, we are concerned with the tempered fractional operator \(-(\Delta+\lambda)^{\alpha\over{2}}\) with α ∈ (0, 2) and λ is a sufficiently small positive constant. We first establish various maximum principle principles and develop the direct moving planes and sliding methods for anti-symmetric functions involving tempered fractional operators. And then we consider tempered fractional problems. As applications, we extend the direct method of moving planes and sliding methods for the tempered fractional problem, and discuss how they can be used to establish symmetry, monotonicity, Liouville-type results and uniqueness results for solutions in various domains. We believe that our theory and methods can be conveniently applied to study other problems involving tempered fractional operators.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.