布鲁哈特阶和维尔马模块的连接操作

IF 0.8 2区 数学 Q2 MATHEMATICS
Hankyung Ko, Volodymyr Mazorchuk, Rafael Mrđen
{"title":"布鲁哈特阶和维尔马模块的连接操作","authors":"Hankyung Ko, Volodymyr Mazorchuk, Rafael Mrđen","doi":"10.1007/s11856-024-2637-6","DOIUrl":null,"url":null,"abstract":"<p>We observe that the join operation for the Bruhat order on a Weyl group agrees with the intersections of Verma modules in type <i>A</i>. The statement is not true in other types, and we propose a weaker correspondence. Namely, we introduce distinguished subsets of the Weyl group on which the join operation conjecturally agrees with the intersections of Verma modules. We also relate our conjecture with a statement about the socles of the cokernels of inclusions between Verma modules. The latter determines the first Ext space between a simple module and a Verma module. We give a conjectural complete description of such socles which we verify in a number of cases. Along the way, we determine the poset structure of the join-irreducible elements in Weyl groups and obtain closed formulae for certain families of Kazhdan–Lusztig polynomials.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Join operation for the Bruhat order and Verma modules\",\"authors\":\"Hankyung Ko, Volodymyr Mazorchuk, Rafael Mrđen\",\"doi\":\"10.1007/s11856-024-2637-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We observe that the join operation for the Bruhat order on a Weyl group agrees with the intersections of Verma modules in type <i>A</i>. The statement is not true in other types, and we propose a weaker correspondence. Namely, we introduce distinguished subsets of the Weyl group on which the join operation conjecturally agrees with the intersections of Verma modules. We also relate our conjecture with a statement about the socles of the cokernels of inclusions between Verma modules. The latter determines the first Ext space between a simple module and a Verma module. We give a conjectural complete description of such socles which we verify in a number of cases. Along the way, we determine the poset structure of the join-irreducible elements in Weyl groups and obtain closed formulae for certain families of Kazhdan–Lusztig polynomials.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2637-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2637-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们观察到,在 A 类型中,Weyl 群上布鲁哈特阶的连结操作与 Verma 模块的交集一致。也就是说,我们引入了韦尔群的区分子集,在这些子集上的连结操作猜想与维尔马模块的交点一致。我们还将我们的猜想与 Verma 模块之间夹杂物的交点相关联。后者决定了简单模块与 Verma 模块之间的第一个 Ext 空间。我们给出了对这种共轭的完整描述,并在许多情况下进行了验证。在此过程中,我们确定了韦尔群中连结不可还原元素的正集结构,并获得了卡兹丹-卢兹蒂格多项式某些族的封闭公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Join operation for the Bruhat order and Verma modules

We observe that the join operation for the Bruhat order on a Weyl group agrees with the intersections of Verma modules in type A. The statement is not true in other types, and we propose a weaker correspondence. Namely, we introduce distinguished subsets of the Weyl group on which the join operation conjecturally agrees with the intersections of Verma modules. We also relate our conjecture with a statement about the socles of the cokernels of inclusions between Verma modules. The latter determines the first Ext space between a simple module and a Verma module. We give a conjectural complete description of such socles which we verify in a number of cases. Along the way, we determine the poset structure of the join-irreducible elements in Weyl groups and obtain closed formulae for certain families of Kazhdan–Lusztig polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信