{"title":"布鲁哈特阶和维尔马模块的连接操作","authors":"Hankyung Ko, Volodymyr Mazorchuk, Rafael Mrđen","doi":"10.1007/s11856-024-2637-6","DOIUrl":null,"url":null,"abstract":"<p>We observe that the join operation for the Bruhat order on a Weyl group agrees with the intersections of Verma modules in type <i>A</i>. The statement is not true in other types, and we propose a weaker correspondence. Namely, we introduce distinguished subsets of the Weyl group on which the join operation conjecturally agrees with the intersections of Verma modules. We also relate our conjecture with a statement about the socles of the cokernels of inclusions between Verma modules. The latter determines the first Ext space between a simple module and a Verma module. We give a conjectural complete description of such socles which we verify in a number of cases. Along the way, we determine the poset structure of the join-irreducible elements in Weyl groups and obtain closed formulae for certain families of Kazhdan–Lusztig polynomials.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Join operation for the Bruhat order and Verma modules\",\"authors\":\"Hankyung Ko, Volodymyr Mazorchuk, Rafael Mrđen\",\"doi\":\"10.1007/s11856-024-2637-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We observe that the join operation for the Bruhat order on a Weyl group agrees with the intersections of Verma modules in type <i>A</i>. The statement is not true in other types, and we propose a weaker correspondence. Namely, we introduce distinguished subsets of the Weyl group on which the join operation conjecturally agrees with the intersections of Verma modules. We also relate our conjecture with a statement about the socles of the cokernels of inclusions between Verma modules. The latter determines the first Ext space between a simple module and a Verma module. We give a conjectural complete description of such socles which we verify in a number of cases. Along the way, we determine the poset structure of the join-irreducible elements in Weyl groups and obtain closed formulae for certain families of Kazhdan–Lusztig polynomials.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2637-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2637-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Join operation for the Bruhat order and Verma modules
We observe that the join operation for the Bruhat order on a Weyl group agrees with the intersections of Verma modules in type A. The statement is not true in other types, and we propose a weaker correspondence. Namely, we introduce distinguished subsets of the Weyl group on which the join operation conjecturally agrees with the intersections of Verma modules. We also relate our conjecture with a statement about the socles of the cokernels of inclusions between Verma modules. The latter determines the first Ext space between a simple module and a Verma module. We give a conjectural complete description of such socles which we verify in a number of cases. Along the way, we determine the poset structure of the join-irreducible elements in Weyl groups and obtain closed formulae for certain families of Kazhdan–Lusztig polynomials.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.