关于闵科夫斯基时空中平面三角形的说明

Yan Cao
{"title":"关于闵科夫斯基时空中平面三角形的说明","authors":"Yan Cao","doi":"arxiv-2408.03898","DOIUrl":null,"url":null,"abstract":"The geometry of 2D Minkowski spacetime $\\mathbb{R}^{1,1}$ (or Minkowski\nplane) is similar but fundamentally different from the more familiar Euclidean\nplane geometry. This note gives an elementary discussion on some basic\nproperties of a triangle on the Minkowski plane. In particular, we show that\nthe theorem of Feuerbach also holds and a use of the incenter/excenters is\npointed out.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on the planar triangles in Minkowski spacetime\",\"authors\":\"Yan Cao\",\"doi\":\"arxiv-2408.03898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometry of 2D Minkowski spacetime $\\\\mathbb{R}^{1,1}$ (or Minkowski\\nplane) is similar but fundamentally different from the more familiar Euclidean\\nplane geometry. This note gives an elementary discussion on some basic\\nproperties of a triangle on the Minkowski plane. In particular, we show that\\nthe theorem of Feuerbach also holds and a use of the incenter/excenters is\\npointed out.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维闵科夫斯基时空$\mathbb{R}^{1,1}$(或闵科夫斯基平面)的几何与我们更熟悉的欧几里得平面几何相似,但又有本质区别。本论文将对闵科夫斯基平面上三角形的一些基本性质进行基本讨论。特别是,我们证明费尔巴哈定理也成立,并指出了入心/出心的用法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on the planar triangles in Minkowski spacetime
The geometry of 2D Minkowski spacetime $\mathbb{R}^{1,1}$ (or Minkowski plane) is similar but fundamentally different from the more familiar Euclidean plane geometry. This note gives an elementary discussion on some basic properties of a triangle on the Minkowski plane. In particular, we show that the theorem of Feuerbach also holds and a use of the incenter/excenters is pointed out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信