{"title":"证明莫尼卡尔、佩切尼克和塞尔的 K$ 理论多项式猜想","authors":"Laura Pierson","doi":"arxiv-2408.01390","DOIUrl":null,"url":null,"abstract":"As part of a program to develop $K$-theoretic analogues of combinatorially\nimportant polynomials, Monical, Pechenik, and Searles (2021) proved two\nexpansion formulas $\\overline{\\mathfrak{A}}_a = \\sum_b\nQ_b^a(\\beta)\\overline{\\mathfrak{P}}_b$ and $\\overline{\\mathfrak{Q}}_a = \\sum_b\nM_b^a(\\beta)\\overline{\\mathfrak{F}}_b,$ where each of\n$\\overline{\\mathfrak{A}}_a$, $\\overline{\\mathfrak{P}}_a$,\n$\\overline{\\mathfrak{Q}}_a$ and $\\overline{\\mathfrak{F}}_a$ is a family of\npolynomials that forms a basis for $\\mathbb{Z}[x_1,\\dots,x_n][\\beta]$ indexed\nby weak compositions $a,$ and $Q_b^a(\\beta)$ and $M_b^a(\\beta)$ are monomials\nin $\\beta$ for each pair $(a,b)$ of weak compositions. The polynomials\n$\\overline{\\mathfrak{A}}_a$ are the Lascoux atoms, $\\overline{\\mathfrak{P}}_a$\nare the kaons, $\\overline{\\mathfrak{Q}}_a$ are the quasiLascoux polynomials,\nand $\\overline{\\mathfrak{F}}_a$ are the glide polynomials; these are\nrespectively the $K$-analogues of the Demazure atoms $\\mathfrak{A}_a$, the\nfundamental particles $\\mathfrak{P}_a$, the quasikey polynomials\n$\\mathfrak{Q}_a$, and the fundamental slide polynomials $\\mathfrak{F}_a$.\nMonical, Pechenik, and Searles conjectured that for any fixed $a,$ $\\sum_b\nQ_b^a(-1), \\sum_b M_b^a(-1) \\in \\{0,1\\},$ where $b$ ranges over all weak\ncompositions. We prove this conjecture using a sign-reversing involution.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a $K$-theoretic polynomial conjecture of Monical, Pechenik, and Searles\",\"authors\":\"Laura Pierson\",\"doi\":\"arxiv-2408.01390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of a program to develop $K$-theoretic analogues of combinatorially\\nimportant polynomials, Monical, Pechenik, and Searles (2021) proved two\\nexpansion formulas $\\\\overline{\\\\mathfrak{A}}_a = \\\\sum_b\\nQ_b^a(\\\\beta)\\\\overline{\\\\mathfrak{P}}_b$ and $\\\\overline{\\\\mathfrak{Q}}_a = \\\\sum_b\\nM_b^a(\\\\beta)\\\\overline{\\\\mathfrak{F}}_b,$ where each of\\n$\\\\overline{\\\\mathfrak{A}}_a$, $\\\\overline{\\\\mathfrak{P}}_a$,\\n$\\\\overline{\\\\mathfrak{Q}}_a$ and $\\\\overline{\\\\mathfrak{F}}_a$ is a family of\\npolynomials that forms a basis for $\\\\mathbb{Z}[x_1,\\\\dots,x_n][\\\\beta]$ indexed\\nby weak compositions $a,$ and $Q_b^a(\\\\beta)$ and $M_b^a(\\\\beta)$ are monomials\\nin $\\\\beta$ for each pair $(a,b)$ of weak compositions. The polynomials\\n$\\\\overline{\\\\mathfrak{A}}_a$ are the Lascoux atoms, $\\\\overline{\\\\mathfrak{P}}_a$\\nare the kaons, $\\\\overline{\\\\mathfrak{Q}}_a$ are the quasiLascoux polynomials,\\nand $\\\\overline{\\\\mathfrak{F}}_a$ are the glide polynomials; these are\\nrespectively the $K$-analogues of the Demazure atoms $\\\\mathfrak{A}_a$, the\\nfundamental particles $\\\\mathfrak{P}_a$, the quasikey polynomials\\n$\\\\mathfrak{Q}_a$, and the fundamental slide polynomials $\\\\mathfrak{F}_a$.\\nMonical, Pechenik, and Searles conjectured that for any fixed $a,$ $\\\\sum_b\\nQ_b^a(-1), \\\\sum_b M_b^a(-1) \\\\in \\\\{0,1\\\\},$ where $b$ ranges over all weak\\ncompositions. We prove this conjecture using a sign-reversing involution.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proof of a $K$-theoretic polynomial conjecture of Monical, Pechenik, and Searles
As part of a program to develop $K$-theoretic analogues of combinatorially
important polynomials, Monical, Pechenik, and Searles (2021) proved two
expansion formulas $\overline{\mathfrak{A}}_a = \sum_b
Q_b^a(\beta)\overline{\mathfrak{P}}_b$ and $\overline{\mathfrak{Q}}_a = \sum_b
M_b^a(\beta)\overline{\mathfrak{F}}_b,$ where each of
$\overline{\mathfrak{A}}_a$, $\overline{\mathfrak{P}}_a$,
$\overline{\mathfrak{Q}}_a$ and $\overline{\mathfrak{F}}_a$ is a family of
polynomials that forms a basis for $\mathbb{Z}[x_1,\dots,x_n][\beta]$ indexed
by weak compositions $a,$ and $Q_b^a(\beta)$ and $M_b^a(\beta)$ are monomials
in $\beta$ for each pair $(a,b)$ of weak compositions. The polynomials
$\overline{\mathfrak{A}}_a$ are the Lascoux atoms, $\overline{\mathfrak{P}}_a$
are the kaons, $\overline{\mathfrak{Q}}_a$ are the quasiLascoux polynomials,
and $\overline{\mathfrak{F}}_a$ are the glide polynomials; these are
respectively the $K$-analogues of the Demazure atoms $\mathfrak{A}_a$, the
fundamental particles $\mathfrak{P}_a$, the quasikey polynomials
$\mathfrak{Q}_a$, and the fundamental slide polynomials $\mathfrak{F}_a$.
Monical, Pechenik, and Searles conjectured that for any fixed $a,$ $\sum_b
Q_b^a(-1), \sum_b M_b^a(-1) \in \{0,1\},$ where $b$ ranges over all weak
compositions. We prove this conjecture using a sign-reversing involution.