关于二维雅各布猜想:马格努斯公式再探,IV

Kyungyong Lee, Li Li
{"title":"关于二维雅各布猜想:马格努斯公式再探,IV","authors":"Kyungyong Lee, Li Li","doi":"arxiv-2408.01279","DOIUrl":null,"url":null,"abstract":"Let $(F,G)$ be a Jacobian pair with $d=w\\text{-deg}(F)$ and\n$e=w\\text{-deg}(G)$ for some direction $w$. A generalized Magnus' formula\napproximates $G$ as $\\sum_{\\gamma\\ge 0} c_\\gamma F^{\\frac{e-\\gamma}{d}}$ for\nsome complex numbers $c_\\gamma$. We develop an approach to the two-dimensional\nJacobian conjecture, aiming to minimize the use of terms corresponding to\n$\\gamma>0$. As an initial step in this approach, we define and study the inner\npolynomials of $F$ and $G$. The main result of this paper shows that the\nnortheastern vertex of the Newton polygon of each inner polynomial is located\nwithin a specific region. As applications of this result, we introduce several\nconjectures and prove some of them for special cases.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the two-dimensional Jacobian conjecture: Magnus' formula revisited, IV\",\"authors\":\"Kyungyong Lee, Li Li\",\"doi\":\"arxiv-2408.01279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(F,G)$ be a Jacobian pair with $d=w\\\\text{-deg}(F)$ and\\n$e=w\\\\text{-deg}(G)$ for some direction $w$. A generalized Magnus' formula\\napproximates $G$ as $\\\\sum_{\\\\gamma\\\\ge 0} c_\\\\gamma F^{\\\\frac{e-\\\\gamma}{d}}$ for\\nsome complex numbers $c_\\\\gamma$. We develop an approach to the two-dimensional\\nJacobian conjecture, aiming to minimize the use of terms corresponding to\\n$\\\\gamma>0$. As an initial step in this approach, we define and study the inner\\npolynomials of $F$ and $G$. The main result of this paper shows that the\\nnortheastern vertex of the Newton polygon of each inner polynomial is located\\nwithin a specific region. As applications of this result, we introduce several\\nconjectures and prove some of them for special cases.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让$(F,G)$是一对雅各布对,其中$d=w\text{-deg}(F)$和$e=w\text{-deg}(G)$为某个方向$w$。对于一些复数 $c_\gamma$,广义的马格努斯公式将 $G$ 近似为 $/sum_{\gamma\ge 0} c_\gamma F^\{frac{e-\gamma}{d}$ 。我们为二维雅各布猜想开发了一种方法,旨在尽量减少与$\gamma>0$相对应的项的使用。作为这种方法的第一步,我们定义并研究了 $F$ 和 $G$ 的内接多项式。本文的主要结果表明,每个内多项式的牛顿多边形的东北顶点都位于一个特定区域内。作为这一结果的应用,我们引入了几个猜想,并证明了其中一些特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the two-dimensional Jacobian conjecture: Magnus' formula revisited, IV
Let $(F,G)$ be a Jacobian pair with $d=w\text{-deg}(F)$ and $e=w\text{-deg}(G)$ for some direction $w$. A generalized Magnus' formula approximates $G$ as $\sum_{\gamma\ge 0} c_\gamma F^{\frac{e-\gamma}{d}}$ for some complex numbers $c_\gamma$. We develop an approach to the two-dimensional Jacobian conjecture, aiming to minimize the use of terms corresponding to $\gamma>0$. As an initial step in this approach, we define and study the inner polynomials of $F$ and $G$. The main result of this paper shows that the northeastern vertex of the Newton polygon of each inner polynomial is located within a specific region. As applications of this result, we introduce several conjectures and prove some of them for special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信