Cosimo Flavi, Joachim Jelisiejew, Mateusz Michałek
{"title":"对称幂:结构、平滑性和应用","authors":"Cosimo Flavi, Joachim Jelisiejew, Mateusz Michałek","doi":"arxiv-2408.02754","DOIUrl":null,"url":null,"abstract":"We investigate border ranks of twisted powers of polynomials and\nsmoothability of symmetric powers of algebras. We prove that the latter are\nsmoothable. For the former, we obtain upper bounds for the border rank in\ngeneral and prove that they are optimal under mild conditions. We give\napplications to complexity theory.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric powers: structure, smoothability, and applications\",\"authors\":\"Cosimo Flavi, Joachim Jelisiejew, Mateusz Michałek\",\"doi\":\"arxiv-2408.02754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate border ranks of twisted powers of polynomials and\\nsmoothability of symmetric powers of algebras. We prove that the latter are\\nsmoothable. For the former, we obtain upper bounds for the border rank in\\ngeneral and prove that they are optimal under mild conditions. We give\\napplications to complexity theory.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symmetric powers: structure, smoothability, and applications
We investigate border ranks of twisted powers of polynomials and
smoothability of symmetric powers of algebras. We prove that the latter are
smoothable. For the former, we obtain upper bounds for the border rank in
general and prove that they are optimal under mild conditions. We give
applications to complexity theory.