标记扰动和锚定分辨率

Keller VandeBogert
{"title":"标记扰动和锚定分辨率","authors":"Keller VandeBogert","doi":"arxiv-2408.02749","DOIUrl":null,"url":null,"abstract":"In this paper, we take advantage of a reinterpretation of differential\nmodules admitting a flag structure as a special class of perturbations of\ncomplexes. We are thus able to leverage the machinery of homological\nperturbation theory to prove strong statements on the homological theory of\ndifferential modules admitting additional auxiliary gradings and having\ninfinite homological dimension. One of the main takeaways of our results is\nthat the category of differential modules is much more similar than expected to\nthe category of chain complexes, and from the K-theoretic perspective such\nobjects are largely indistinguishable. This intuition is made precise through\nthe construction of so-called anchored resolutions, which are a distinguished\nclass of projective flag resolutions that possess remarkably well-behaved\nuniqueness properties in the (flag-preserving) homotopy category. We apply this\ntheory to prove an analogue of the Total Rank Conjecture for differential\nmodules admitting a ZZ/2-grading in a large number of cases.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flagged Perturbations and Anchored Resolutions\",\"authors\":\"Keller VandeBogert\",\"doi\":\"arxiv-2408.02749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we take advantage of a reinterpretation of differential\\nmodules admitting a flag structure as a special class of perturbations of\\ncomplexes. We are thus able to leverage the machinery of homological\\nperturbation theory to prove strong statements on the homological theory of\\ndifferential modules admitting additional auxiliary gradings and having\\ninfinite homological dimension. One of the main takeaways of our results is\\nthat the category of differential modules is much more similar than expected to\\nthe category of chain complexes, and from the K-theoretic perspective such\\nobjects are largely indistinguishable. This intuition is made precise through\\nthe construction of so-called anchored resolutions, which are a distinguished\\nclass of projective flag resolutions that possess remarkably well-behaved\\nuniqueness properties in the (flag-preserving) homotopy category. We apply this\\ntheory to prove an analogue of the Total Rank Conjecture for differential\\nmodules admitting a ZZ/2-grading in a large number of cases.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用了将允许旗结构的微分模重新解释为一类特殊的复数扰动的方法。因此,我们能够利用同调扰动理论的机制,证明容许额外辅助等级并具有无限同调维度的微分模的同调理论的强声明。我们结果的主要启示之一是,微分模范畴与链复数范畴的相似程度远超预期,而且从 K 理论的角度来看,这类对象基本上是不可区分的。通过构建所谓的锚定决议,这一直觉变得更加精确了,锚定决议是射影旗决议的一个杰出类别,在(保旗)同调范畴中具有非常良好的唯一性。我们应用这一理论证明了在大量情况下允许 ZZ/2 等级的微分模块的总等级猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flagged Perturbations and Anchored Resolutions
In this paper, we take advantage of a reinterpretation of differential modules admitting a flag structure as a special class of perturbations of complexes. We are thus able to leverage the machinery of homological perturbation theory to prove strong statements on the homological theory of differential modules admitting additional auxiliary gradings and having infinite homological dimension. One of the main takeaways of our results is that the category of differential modules is much more similar than expected to the category of chain complexes, and from the K-theoretic perspective such objects are largely indistinguishable. This intuition is made precise through the construction of so-called anchored resolutions, which are a distinguished class of projective flag resolutions that possess remarkably well-behaved uniqueness properties in the (flag-preserving) homotopy category. We apply this theory to prove an analogue of the Total Rank Conjecture for differential modules admitting a ZZ/2-grading in a large number of cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信