Ela Celikbas, Olgur Celikbas, Hiroki Matsui, Ryo Takahashi
{"title":"论偶数周期模块自扩展的消失","authors":"Ela Celikbas, Olgur Celikbas, Hiroki Matsui, Ryo Takahashi","doi":"arxiv-2408.02820","DOIUrl":null,"url":null,"abstract":"In this paper we study rigid modules over commutative Noetherian local rings,\nestablish new freeness criteria for certain periodic rigid modules, and extend\nseveral results from the literature. Along the way, we prove general Ext\nvanishing results over Cohen-Macaulay rings and investigate modules which have\nzero class in the reduced Grothendieck group with rational coefficients.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the vanishing of self extensions of even-periodic modules\",\"authors\":\"Ela Celikbas, Olgur Celikbas, Hiroki Matsui, Ryo Takahashi\",\"doi\":\"arxiv-2408.02820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study rigid modules over commutative Noetherian local rings,\\nestablish new freeness criteria for certain periodic rigid modules, and extend\\nseveral results from the literature. Along the way, we prove general Ext\\nvanishing results over Cohen-Macaulay rings and investigate modules which have\\nzero class in the reduced Grothendieck group with rational coefficients.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the vanishing of self extensions of even-periodic modules
In this paper we study rigid modules over commutative Noetherian local rings,
establish new freeness criteria for certain periodic rigid modules, and extend
several results from the literature. Along the way, we prove general Ext
vanishing results over Cohen-Macaulay rings and investigate modules which have
zero class in the reduced Grothendieck group with rational coefficients.