立体图形的堆积数

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Wayne Goddard , Michael A. Henning
{"title":"立体图形的堆积数","authors":"Wayne Goddard ,&nbsp;Michael A. Henning","doi":"10.1016/j.disopt.2024.100850","DOIUrl":null,"url":null,"abstract":"<div><p>A packing in a graph is a set of vertices that are mutually distance at least 3 apart. By using optimization and linear programming to help analyze the greedy algorithm, we improve on a result of Favaron and show that every connected cubic graph of order <span><math><mi>n</mi></math></span> has a packing of size at least <span><math><mrow><mfrac><mrow><mn>17</mn></mrow><mrow><mn>132</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"53 ","pages":"Article 100850"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The packing number of cubic graphs\",\"authors\":\"Wayne Goddard ,&nbsp;Michael A. Henning\",\"doi\":\"10.1016/j.disopt.2024.100850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A packing in a graph is a set of vertices that are mutually distance at least 3 apart. By using optimization and linear programming to help analyze the greedy algorithm, we improve on a result of Favaron and show that every connected cubic graph of order <span><math><mi>n</mi></math></span> has a packing of size at least <span><math><mrow><mfrac><mrow><mn>17</mn></mrow><mrow><mn>132</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"53 \",\"pages\":\"Article 100850\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157252862400029X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157252862400029X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图中的堆积是指相互距离至少为 3 的顶点集合。通过使用优化和线性规划来帮助分析贪婪算法,我们改进了法瓦隆的一个结果,并证明了每一个有序连通的立方图都有一个大小至少为 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The packing number of cubic graphs

A packing in a graph is a set of vertices that are mutually distance at least 3 apart. By using optimization and linear programming to help analyze the greedy algorithm, we improve on a result of Favaron and show that every connected cubic graph of order n has a packing of size at least 17132nO(1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信