大型语言模型是否擅长数据库旋钮调整?综合实验评估

Yiyan Li, Haoyang Li, Zhao Pu, Jing Zhang, Xinyi Zhang, Tao Ji, Luming Sun, Cuiping Li, Hong Chen
{"title":"大型语言模型是否擅长数据库旋钮调整?综合实验评估","authors":"Yiyan Li, Haoyang Li, Zhao Pu, Jing Zhang, Xinyi Zhang, Tao Ji, Luming Sun, Cuiping Li, Hong Chen","doi":"arxiv-2408.02213","DOIUrl":null,"url":null,"abstract":"Knob tuning plays a crucial role in optimizing databases by adjusting knobs\nto enhance database performance. However, traditional tuning methods often\nfollow a Try-Collect-Adjust approach, proving inefficient and\ndatabase-specific. Moreover, these methods are often opaque, making it\nchallenging for DBAs to grasp the underlying decision-making process. The emergence of large language models (LLMs) like GPT-4 and Claude-3 has\nexcelled in complex natural language tasks, yet their potential in database\nknob tuning remains largely unexplored. This study harnesses LLMs as\nexperienced DBAs for knob-tuning tasks with carefully designed prompts. We\nidentify three key subtasks in the tuning system: knob pruning, model\ninitialization, and knob recommendation, proposing LLM-driven solutions to\nreplace conventional methods for each subtask. We conduct extensive experiments to compare LLM-driven approaches against\ntraditional methods across the subtasks to evaluate LLMs' efficacy in the knob\ntuning domain. Furthermore, we explore the adaptability of LLM-based solutions\nin diverse evaluation settings, encompassing new benchmarks, database engines,\nand hardware environments. Our findings reveal that LLMs not only match or\nsurpass traditional methods but also exhibit notable interpretability by\ngenerating responses in a coherent ``chain-of-thought'' manner. We further\nobserve that LLMs exhibit remarkable generalizability through simple\nadjustments in prompts, eliminating the necessity for additional training or\nextensive code modifications. Drawing insights from our experimental findings, we identify several\nopportunities for future research aimed at advancing the utilization of LLMs in\nthe realm of database management.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is Large Language Model Good at Database Knob Tuning? A Comprehensive Experimental Evaluation\",\"authors\":\"Yiyan Li, Haoyang Li, Zhao Pu, Jing Zhang, Xinyi Zhang, Tao Ji, Luming Sun, Cuiping Li, Hong Chen\",\"doi\":\"arxiv-2408.02213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knob tuning plays a crucial role in optimizing databases by adjusting knobs\\nto enhance database performance. However, traditional tuning methods often\\nfollow a Try-Collect-Adjust approach, proving inefficient and\\ndatabase-specific. Moreover, these methods are often opaque, making it\\nchallenging for DBAs to grasp the underlying decision-making process. The emergence of large language models (LLMs) like GPT-4 and Claude-3 has\\nexcelled in complex natural language tasks, yet their potential in database\\nknob tuning remains largely unexplored. This study harnesses LLMs as\\nexperienced DBAs for knob-tuning tasks with carefully designed prompts. We\\nidentify three key subtasks in the tuning system: knob pruning, model\\ninitialization, and knob recommendation, proposing LLM-driven solutions to\\nreplace conventional methods for each subtask. We conduct extensive experiments to compare LLM-driven approaches against\\ntraditional methods across the subtasks to evaluate LLMs' efficacy in the knob\\ntuning domain. Furthermore, we explore the adaptability of LLM-based solutions\\nin diverse evaluation settings, encompassing new benchmarks, database engines,\\nand hardware environments. Our findings reveal that LLMs not only match or\\nsurpass traditional methods but also exhibit notable interpretability by\\ngenerating responses in a coherent ``chain-of-thought'' manner. We further\\nobserve that LLMs exhibit remarkable generalizability through simple\\nadjustments in prompts, eliminating the necessity for additional training or\\nextensive code modifications. Drawing insights from our experimental findings, we identify several\\nopportunities for future research aimed at advancing the utilization of LLMs in\\nthe realm of database management.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旋钮调整通过调整旋钮来提高数据库性能,在优化数据库方面发挥着至关重要的作用。然而,传统的调整方法通常采用尝试-收集-调整的方法,效率低下,而且针对特定数据库。此外,这些方法往往不透明,使 DBA 难以掌握基本的决策过程。GPT-4 和 Claude-3 等大型语言模型(LLM)在复杂的自然语言任务中表现出色,但它们在数据库调整方面的潜力在很大程度上仍未得到开发。本研究利用 LLMs 作为经验丰富的 DBA,通过精心设计的提示执行旋钮调整任务。我们确定了调整系统中的三个关键子任务:旋钮修剪、模型初始化和旋钮推荐,并针对每个子任务提出了 LLM 驱动的解决方案,以取代传统方法。我们进行了大量实验,将 LLM 驱动的方法与传统方法在各个子任务中进行比较,以评估 LLM 在旋钮调谐领域的功效。此外,我们还探索了基于 LLM 的解决方案在不同评估环境中的适应性,包括新基准、数据库引擎和硬件环境。我们的研究结果表明,LLM 不仅可以匹配或超越传统方法,而且还能以连贯的 "思维链 "方式生成响应,从而表现出显著的可解释性。我们还注意到,通过对提示进行简单的调整,LLMs 无需进行额外的培训或大量的代码修改,就能表现出显著的通用性。从我们的实验结果中,我们发现了未来研究的几个机会,旨在推动数据库管理领域对LLM的利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is Large Language Model Good at Database Knob Tuning? A Comprehensive Experimental Evaluation
Knob tuning plays a crucial role in optimizing databases by adjusting knobs to enhance database performance. However, traditional tuning methods often follow a Try-Collect-Adjust approach, proving inefficient and database-specific. Moreover, these methods are often opaque, making it challenging for DBAs to grasp the underlying decision-making process. The emergence of large language models (LLMs) like GPT-4 and Claude-3 has excelled in complex natural language tasks, yet their potential in database knob tuning remains largely unexplored. This study harnesses LLMs as experienced DBAs for knob-tuning tasks with carefully designed prompts. We identify three key subtasks in the tuning system: knob pruning, model initialization, and knob recommendation, proposing LLM-driven solutions to replace conventional methods for each subtask. We conduct extensive experiments to compare LLM-driven approaches against traditional methods across the subtasks to evaluate LLMs' efficacy in the knob tuning domain. Furthermore, we explore the adaptability of LLM-based solutions in diverse evaluation settings, encompassing new benchmarks, database engines, and hardware environments. Our findings reveal that LLMs not only match or surpass traditional methods but also exhibit notable interpretability by generating responses in a coherent ``chain-of-thought'' manner. We further observe that LLMs exhibit remarkable generalizability through simple adjustments in prompts, eliminating the necessity for additional training or extensive code modifications. Drawing insights from our experimental findings, we identify several opportunities for future research aimed at advancing the utilization of LLMs in the realm of database management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信