采用大型语言模型的合成事件自增强视频数据管理系统 [技术报告]

Enhao Zhang, Nicole Sullivan, Brandon Haynes, Ranjay Krishna, Magdalena Balazinska
{"title":"采用大型语言模型的合成事件自增强视频数据管理系统 [技术报告]","authors":"Enhao Zhang, Nicole Sullivan, Brandon Haynes, Ranjay Krishna, Magdalena Balazinska","doi":"arxiv-2408.02243","DOIUrl":null,"url":null,"abstract":"Complex video queries can be answered by decomposing them into modular\nsubtasks. However, existing video data management systems assume the existence\nof predefined modules for each subtask. We introduce VOCAL-UDF, a novel\nself-enhancing system that supports compositional queries over videos without\nthe need for predefined modules. VOCAL-UDF automatically identifies and\nconstructs missing modules and encapsulates them as user-defined functions\n(UDFs), thus expanding its querying capabilities. To achieve this, we formulate\na unified UDF model that leverages large language models (LLMs) to aid in new\nUDF generation. VOCAL-UDF handles a wide range of concepts by supporting both\nprogram-based UDFs (i.e., Python functions generated by LLMs) and\ndistilled-model UDFs (lightweight vision models distilled from strong\npretrained models). To resolve the inherent ambiguity in user intent, VOCAL-UDF\ngenerates multiple candidate UDFs and uses active learning to efficiently\nselect the best one. With the self-enhancing capability, VOCAL-UDF\nsignificantly improves query performance across three video datasets.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Enhancing Video Data Management System for Compositional Events with Large Language Models [Technical Report]\",\"authors\":\"Enhao Zhang, Nicole Sullivan, Brandon Haynes, Ranjay Krishna, Magdalena Balazinska\",\"doi\":\"arxiv-2408.02243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex video queries can be answered by decomposing them into modular\\nsubtasks. However, existing video data management systems assume the existence\\nof predefined modules for each subtask. We introduce VOCAL-UDF, a novel\\nself-enhancing system that supports compositional queries over videos without\\nthe need for predefined modules. VOCAL-UDF automatically identifies and\\nconstructs missing modules and encapsulates them as user-defined functions\\n(UDFs), thus expanding its querying capabilities. To achieve this, we formulate\\na unified UDF model that leverages large language models (LLMs) to aid in new\\nUDF generation. VOCAL-UDF handles a wide range of concepts by supporting both\\nprogram-based UDFs (i.e., Python functions generated by LLMs) and\\ndistilled-model UDFs (lightweight vision models distilled from strong\\npretrained models). To resolve the inherent ambiguity in user intent, VOCAL-UDF\\ngenerates multiple candidate UDFs and uses active learning to efficiently\\nselect the best one. With the self-enhancing capability, VOCAL-UDF\\nsignificantly improves query performance across three video datasets.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂的视频查询可通过将其分解为模块化子任务来回答。然而,现有的视频数据管理系统假设每个子任务都存在预定义的模块。我们介绍了 VOCAL-UDF,它是一种新颖的自我增强系统,无需预定义模块即可支持视频组合查询。VOCAL-UDF 可自动识别和构建缺失的模块,并将其封装为用户自定义函数(UDF),从而扩展其查询功能。为此,我们建立了一个统一的 UDF 模型,利用大型语言模型(LLM)来帮助生成新的 UDF。VOCAL-UDF 支持基于程序的 UDF(即由 LLM 生成的 Python 函数)和经蒸馏的模型 UDF(从强预处理模型中蒸馏出的轻量级视觉模型),可以处理各种概念。为了解决用户意图中固有的模糊性,VOCAL-UDF 生成多个候选 UDF,并利用主动学习有效地选择最佳 UDF。凭借自我增强能力,VOCAL-UDF 显著提高了三个视频数据集的查询性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Enhancing Video Data Management System for Compositional Events with Large Language Models [Technical Report]
Complex video queries can be answered by decomposing them into modular subtasks. However, existing video data management systems assume the existence of predefined modules for each subtask. We introduce VOCAL-UDF, a novel self-enhancing system that supports compositional queries over videos without the need for predefined modules. VOCAL-UDF automatically identifies and constructs missing modules and encapsulates them as user-defined functions (UDFs), thus expanding its querying capabilities. To achieve this, we formulate a unified UDF model that leverages large language models (LLMs) to aid in new UDF generation. VOCAL-UDF handles a wide range of concepts by supporting both program-based UDFs (i.e., Python functions generated by LLMs) and distilled-model UDFs (lightweight vision models distilled from strong pretrained models). To resolve the inherent ambiguity in user intent, VOCAL-UDF generates multiple candidate UDFs and uses active learning to efficiently select the best one. With the self-enhancing capability, VOCAL-UDF significantly improves query performance across three video datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信