使用大型语言模型的 NL2SQL 调查:我们在哪里,我们要去哪里?

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang
{"title":"使用大型语言模型的 NL2SQL 调查:我们在哪里,我们要去哪里?","authors":"Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang","doi":"arxiv-2408.05109","DOIUrl":null,"url":null,"abstract":"Translating users' natural language queries (NL) into SQL queries (i.e.,\nNL2SQL) can significantly reduce barriers to accessing relational databases and\nsupport various commercial applications. The performance of NL2SQL has been\ngreatly enhanced with the emergence of Large Language Models (LLMs). In this\nsurvey, we provide a comprehensive review of NL2SQL techniques powered by LLMs,\ncovering its entire lifecycle from the following four aspects: (1) Model:\nNL2SQL translation techniques that tackle not only NL ambiguity and\nunder-specification, but also properly map NL with database schema and\ninstances; (2) Data: From the collection of training data, data synthesis due\nto training data scarcity, to NL2SQL benchmarks; (3) Evaluation: Evaluating\nNL2SQL methods from multiple angles using different metrics and granularities;\nand (4) Error Analysis: analyzing NL2SQL errors to find the root cause and\nguiding NL2SQL models to evolve. Moreover, we provide a rule of thumb for\ndeveloping NL2SQL solutions. Finally, we discuss the research challenges and\nopen problems of NL2SQL in the LLMs era.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of NL2SQL with Large Language Models: Where are we, and where are we going?\",\"authors\":\"Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang\",\"doi\":\"arxiv-2408.05109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Translating users' natural language queries (NL) into SQL queries (i.e.,\\nNL2SQL) can significantly reduce barriers to accessing relational databases and\\nsupport various commercial applications. The performance of NL2SQL has been\\ngreatly enhanced with the emergence of Large Language Models (LLMs). In this\\nsurvey, we provide a comprehensive review of NL2SQL techniques powered by LLMs,\\ncovering its entire lifecycle from the following four aspects: (1) Model:\\nNL2SQL translation techniques that tackle not only NL ambiguity and\\nunder-specification, but also properly map NL with database schema and\\ninstances; (2) Data: From the collection of training data, data synthesis due\\nto training data scarcity, to NL2SQL benchmarks; (3) Evaluation: Evaluating\\nNL2SQL methods from multiple angles using different metrics and granularities;\\nand (4) Error Analysis: analyzing NL2SQL errors to find the root cause and\\nguiding NL2SQL models to evolve. Moreover, we provide a rule of thumb for\\ndeveloping NL2SQL solutions. Finally, we discuss the research challenges and\\nopen problems of NL2SQL in the LLMs era.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将用户的自然语言查询(NL)翻译成 SQL 查询(即 NL2SQL)可以大大减少访问关系数据库的障碍,并为各种商业应用提供支持。随着大型语言模型(LLM)的出现,NL2SQL 的性能大大提高。在本次调查中,我们从以下四个方面全面回顾了由LLMs驱动的NL2SQL技术,涵盖了其整个生命周期:(1)模型:NL2SQL翻译技术不仅要解决NL歧义和规范不足的问题,还要将NL与数据库模式和实例正确映射;(2)数据:从训练数据的收集、因训练数据稀缺而进行的数据合成,到 NL2SQL 基准;(3) 评估:(4) 错误分析:分析 NL2SQL 错误以找到根本原因,并指导 NL2SQL 模型发展。此外,我们还提供了开发 NL2SQL 解决方案的经验法则。最后,我们讨论了LLMs时代NL2SQL的研究挑战和悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of NL2SQL with Large Language Models: Where are we, and where are we going?
Translating users' natural language queries (NL) into SQL queries (i.e., NL2SQL) can significantly reduce barriers to accessing relational databases and support various commercial applications. The performance of NL2SQL has been greatly enhanced with the emergence of Large Language Models (LLMs). In this survey, we provide a comprehensive review of NL2SQL techniques powered by LLMs, covering its entire lifecycle from the following four aspects: (1) Model: NL2SQL translation techniques that tackle not only NL ambiguity and under-specification, but also properly map NL with database schema and instances; (2) Data: From the collection of training data, data synthesis due to training data scarcity, to NL2SQL benchmarks; (3) Evaluation: Evaluating NL2SQL methods from multiple angles using different metrics and granularities; and (4) Error Analysis: analyzing NL2SQL errors to find the root cause and guiding NL2SQL models to evolve. Moreover, we provide a rule of thumb for developing NL2SQL solutions. Finally, we discuss the research challenges and open problems of NL2SQL in the LLMs era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信