抛物线单层势的常导数跃迁关系

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
I. V. Zhenyakova, M. F. Cherepova
{"title":"抛物线单层势的常导数跃迁关系","authors":"I. V. Zhenyakova, M. F. Cherepova","doi":"10.1080/00036811.2024.2382892","DOIUrl":null,"url":null,"abstract":"We consider a single layer potential generated by the fundamental solution of a second-order parabolic equation with Dini continuous coefficients. The potential is considered in a semibounded spati...","PeriodicalId":55507,"journal":{"name":"Applicable Analysis","volume":"26 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jump relation for the conormal derivative of parabolic single layer potential\",\"authors\":\"I. V. Zhenyakova, M. F. Cherepova\",\"doi\":\"10.1080/00036811.2024.2382892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a single layer potential generated by the fundamental solution of a second-order parabolic equation with Dini continuous coefficients. The potential is considered in a semibounded spati...\",\"PeriodicalId\":55507,\"journal\":{\"name\":\"Applicable Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00036811.2024.2382892\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00036811.2024.2382892","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了由二阶抛物方程的基本解产生的单层势,该方程具有迪尼连续系数。该势能在一个半约束空间中被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jump relation for the conormal derivative of parabolic single layer potential
We consider a single layer potential generated by the fundamental solution of a second-order parabolic equation with Dini continuous coefficients. The potential is considered in a semibounded spati...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis
Applicable Analysis 数学-应用数学
CiteScore
2.60
自引率
9.10%
发文量
175
审稿时长
2 months
期刊介绍: Applicable Analysis is concerned primarily with analysis that has application to scientific and engineering problems. Papers should indicate clearly an application of the mathematics involved. On the other hand, papers that are primarily concerned with modeling rather than analysis are outside the scope of the journal General areas of analysis that are welcomed contain the areas of differential equations, with emphasis on PDEs, and integral equations, nonlinear analysis, applied functional analysis, theoretical numerical analysis and approximation theory. Areas of application, for instance, include the use of homogenization theory for electromagnetic phenomena, acoustic vibrations and other problems with multiple space and time scales, inverse problems for medical imaging and geophysics, variational methods for moving boundary problems, convex analysis for theoretical mechanics and analytical methods for spatial bio-mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信