非线性边缘模式玻色化中的贝里相位

Mathieu Beauvillain, Blagoje Oblak, Marios Petropoulos
{"title":"非线性边缘模式玻色化中的贝里相位","authors":"Mathieu Beauvillain, Blagoje Oblak, Marios Petropoulos","doi":"arxiv-2408.03991","DOIUrl":null,"url":null,"abstract":"We consider chiral, generally nonlinear density waves in one dimension,\nmodelling the bosonized edge modes of a two-dimensional fermionic topological\ninsulator. Using the coincidence between bosonization and Lie-Poisson dynamics\non an affine U(1) group, we show that wave profiles which are periodic in time\nproduce Berry phases accumulated by the underlying fermionic field. These\nphases can be evaluated in closed form for any Hamiltonian, and they serve as a\ndiagnostic of nonlinearity. As an explicit example, we discuss the Korteweg-de\nVries equation, viewed as a model of nonlinear quantum Hall edge modes.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berry Phases in the Bosonization of Nonlinear Edge Modes\",\"authors\":\"Mathieu Beauvillain, Blagoje Oblak, Marios Petropoulos\",\"doi\":\"arxiv-2408.03991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider chiral, generally nonlinear density waves in one dimension,\\nmodelling the bosonized edge modes of a two-dimensional fermionic topological\\ninsulator. Using the coincidence between bosonization and Lie-Poisson dynamics\\non an affine U(1) group, we show that wave profiles which are periodic in time\\nproduce Berry phases accumulated by the underlying fermionic field. These\\nphases can be evaluated in closed form for any Hamiltonian, and they serve as a\\ndiagnostic of nonlinearity. As an explicit example, we discuss the Korteweg-de\\nVries equation, viewed as a model of nonlinear quantum Hall edge modes.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一维的手性、一般非线性密度波,模拟了二维费米拓扑绝缘体的玻色子化边缘模式。利用玻色子化与仿射 U(1) 群上的列-泊松动力学之间的巧合,我们证明了在时间上周期性的波剖面会产生由底层费米子场积累的贝里相。这些相对于任何哈密顿都能以闭合形式求出,它们可以作为非线性的诊断。作为一个明确的例子,我们讨论了被视为非线性量子霍尔边缘模式模型的 Korteweg-deVries 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Berry Phases in the Bosonization of Nonlinear Edge Modes
We consider chiral, generally nonlinear density waves in one dimension, modelling the bosonized edge modes of a two-dimensional fermionic topological insulator. Using the coincidence between bosonization and Lie-Poisson dynamics on an affine U(1) group, we show that wave profiles which are periodic in time produce Berry phases accumulated by the underlying fermionic field. These phases can be evaluated in closed form for any Hamiltonian, and they serve as a diagnostic of nonlinearity. As an explicit example, we discuss the Korteweg-de Vries equation, viewed as a model of nonlinear quantum Hall edge modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信