作为双向对象的$(\mathbb{P}^2, Ω)$的通用镜像

Ailsa Keating, Abigail Ward
{"title":"作为双向对象的$(\\mathbb{P}^2, Ω)$的通用镜像","authors":"Ailsa Keating, Abigail Ward","doi":"arxiv-2408.03764","DOIUrl":null,"url":null,"abstract":"We study homological mirror symmetry for $(\\mathbb{P}^2, \\Omega)$ viewed as\nan object of birational geometry, with $\\Omega$ the standard meromorphic volume\nform. First, we construct universal objects on the two sides of mirror\nsymmetry, focusing on the exact symplectic setting: a smooth complex scheme\n$U_\\mathrm{univ}$ and a Weinstein manifold $M_\\mathrm{univ}$, both of infinite\ntype; and we prove homological mirror symmetry for them. Second, we consider\nautoequivalences. We prove that automorphisms of $U_\\mathrm{univ}$ are given by\na natural discrete subgroup of $\\operatorname{Bir} (\\mathbb{P}^2, \\pm \\Omega)$;\nand that all of these automorphisms are mirror to symplectomorphisms of\n$M_\\mathrm{univ}$. We conclude with some applications.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal mirror to $(\\\\mathbb{P}^2, Ω)$ as a birational object\",\"authors\":\"Ailsa Keating, Abigail Ward\",\"doi\":\"arxiv-2408.03764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study homological mirror symmetry for $(\\\\mathbb{P}^2, \\\\Omega)$ viewed as\\nan object of birational geometry, with $\\\\Omega$ the standard meromorphic volume\\nform. First, we construct universal objects on the two sides of mirror\\nsymmetry, focusing on the exact symplectic setting: a smooth complex scheme\\n$U_\\\\mathrm{univ}$ and a Weinstein manifold $M_\\\\mathrm{univ}$, both of infinite\\ntype; and we prove homological mirror symmetry for them. Second, we consider\\nautoequivalences. We prove that automorphisms of $U_\\\\mathrm{univ}$ are given by\\na natural discrete subgroup of $\\\\operatorname{Bir} (\\\\mathbb{P}^2, \\\\pm \\\\Omega)$;\\nand that all of these automorphisms are mirror to symplectomorphisms of\\n$M_\\\\mathrm{univ}$. We conclude with some applications.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了作为双元几何对象的$(\mathbb{P}^2, \Omega)$的同调镜像对称性,其中$\Omega$是标准的子形态卷形。首先,我们构建了镜像对称两边的普遍对象,重点是精确交映设定:光滑复方案$U_\mathrm{univ}$和韦恩斯坦流形$M_\mathrm{univ}$,两者都是无穷型的;我们证明了它们的同调镜像对称性。其次,我们考虑自变等价性。我们证明$U_\mathrm{univ}$的自变量是由$operatorname{Bir} (\mathbb{P}^2, \pm \Omega)$的一个自然离散子群给出的;而且所有这些自变量都是$M_\mathrm{univ}$的交映自变量的镜像。最后,我们将介绍一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A universal mirror to $(\mathbb{P}^2, Ω)$ as a birational object
We study homological mirror symmetry for $(\mathbb{P}^2, \Omega)$ viewed as an object of birational geometry, with $\Omega$ the standard meromorphic volume form. First, we construct universal objects on the two sides of mirror symmetry, focusing on the exact symplectic setting: a smooth complex scheme $U_\mathrm{univ}$ and a Weinstein manifold $M_\mathrm{univ}$, both of infinite type; and we prove homological mirror symmetry for them. Second, we consider autoequivalences. We prove that automorphisms of $U_\mathrm{univ}$ are given by a natural discrete subgroup of $\operatorname{Bir} (\mathbb{P}^2, \pm \Omega)$; and that all of these automorphisms are mirror to symplectomorphisms of $M_\mathrm{univ}$. We conclude with some applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信